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Hierarchies arise in the context of access control whenever the user population can be modeled as
a set of partially ordered classes (represented as a directed graph). A user with access privileges
for a class obtains access to objects stored at that class and all descendant classes in the hierarchy.
The problem of key management for such hierarchies then consists of assigning a key to each class
in the hierarchy so that keys for descendant classes can be obtained via efficient key derivation.

We propose a solution to this problem with the following properties: (1) the space complexity of
the public information is the same as that of storing the hierarchy; (2) the private information at a
class consists of a single key associated with that class; (3) updates (i.e., revocations and additions)
are handled locally in the hierarchy; (4) the scheme is provably secure against collusion; and (5)
each node can derive the key of any of its descendant with a number of symmetric-key operations
bounded by the length of the path between the nodes. Whereas many previous schemes had some
of these properties, ours is the first that satisfies all of them. The security of our scheme is based
on pseudorandom functions, without reliance on the Random Oracle Model.
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Another substantial contribution of this work is that we are able to lower the key derivation
time at the expense of modestly increasing the public storage associated with the hierarchy. Inser-
tion of additional, so-called shortcut, edges, allows to lower the key derivation to a small constant
number of steps for graphs that are total orders and trees by increasing the total number of edges
by a small asymptotic factor such as O(log∗ n) for an n-node hierarchy. For more general access
hierarchies of dimension d, we use a technique that consists of adding dummy nodes and dimen-
sion reduction. The key derivation work for such graphs is then linear in d and the increase in the
number of edges is by the factor O(logd−1 n) compared to the one-dimensional case.

Finally, by making simple modifications to our scheme, we show how to handle extensions
proposed by Crampton [2003] of the standard hierarchies to “limited depth” and reverse
inheritance.
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1. INTRODUCTION

1.1 Background

In this work, we address the problem of access control and, more specifically,
the key management problem in an access hierarchy. Informally, the general
model is that there is a set of access classes ordered using partial order. We
use a directed graph G, where nodes correspond to classes and edges indicate
their ordering, to represent such a hierarchy. Then a user who is entitled to
have access to a certain class obtains access to that class and its descendants
in the hierarchy. A key management scheme assigns keys to the access classes
and distributes a subset of the keys to a user, which permit her to obtain access
to objects at her class(es) and all of the descendant classes. Such key manage-
ment schemes are usually evaluated by the number of total keys the system
must maintain, the number of keys each user receives, the size of public in-
formation, the time required to derive keys for access classes, and the work
needed when the hierarchy or the set of users change.

Hierarchies of access classes are used in many domains, and in many cases
they are more general than trees. The most traditional example of such hi-
erarchies is Role-Based Access Control (RBAC) models [Ferraiolo and Kuhn
1992; Sandhu et al. 1996] that can be used for many different types of orga-
nizations. Other areas where hierarchies are useful are content distribution
(where the users receive content of different quality or resolution), cable TV
(where certain programs are included in subscription packages), project devel-
opment (different views of information flow and components at managerial,
developers, etc., positions), defense in depth (at each stage of intrusion defense
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there is a specific set of resources that can be accessed), and others. Even more
broadly, hierarchical access control is used in operating systems (e.g., Fraim
[1983]), databases (e.g., Denning et al. [1986]), and networking (e.g., McHugh
and Moore [1986]; Lu and Sundareshan [1988]).

A vital aspect of access control schemes is computational and storage space
requirements for key management and processing. It is clear that low require-
ments allow a scheme to be used in a much wider spectrum of devices and
applications (e.g., inexpensive smartcards, small battery-operated sensors,
embedded processors, etc.) than costly schemes. Thus to make our scheme
acceptable for use with weak clients, we do not use public-key cryptography
and utilize only efficient techniques.

Security of access control models comes from their ability to deny access to
unauthorized data. Also, if a scheme is collusion-resilient, then even if a num-
ber of users with access to different nodes conspire trying to derive additional
keys, they cannot get access to more objects than what they can already legally
access. Even though we intend to use the scheme with tamper-resistant smart-
cards, a number of prior publications (e.g., Anderson and Kuhn [1996; 1997])
suggest that compromising cards is easier than is commonly believed. In ad-
dition, the collusion-resilience allows us to use the scheme with other devices
that do not have tamper-resistance.

One of the key efficiency measures for hierarchical access control schemes
is the number of operations necessary to compute the key for an access class
lower in the hierarchy, because this operation must be performed in real-time
by possibly very weak clients. The best schemes (including ours) require the
number of operations linear in the depth of the graph in the worst case (see
Section 2 for more information), which for some graphs is O(n) where n is
the number of nodes in the access graph. While the number of operations
for key derivation is going to be small on average and an organization’s role
hierarchy tends to be shallow rather than deep, deep hierarchies do arise in
many situations such as:

—Hierarchically organized hardware, where the hierarchy is based on func-
tional and control issues but also on how trusted the hardware components
are;

—Hierarchically organized distributed control structures such as physical
plants or power grids (involving thousands of possibly tiny networked de-
vices such as sensors, actuators, etc.);

—Hierarchical design structures (e.g., aircraft, VLSI circuits, etc.); and

—Task graphs where only an ancestor task should know about descendant
tasks.

Also, deep-access hierarchies can arise even in very simple databases where
the hierarchical complexity can come from super-imposed classifications on
the database that are based on functional, structural, etc. features of that
database. See also Maheshwari [2003]; Rose and Gasteiger [1994] for other ex-
amples of deep hierarchies. This is why a rather substantial part of this work
is dedicated to improving key derivation time, which, as we describe below, can
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be decreased to a small number of operations (constant for trees and linear in
the dimension of the graph for more general hierarchies) with modest increase
in public storage space.

1.2 Our Results

Our approach can support arbitrary access graphs, but in this work we con-
sider only acyclic graphs.1 In this work we describe two schemes: a base
scheme and an extended scheme. The base scheme is simple and extremely
efficient—it can be implemented using only hash functions. We show its prov-
able security against key recovery. The second, extended, scheme provides
higher security guarantees: we prove that user keys are now pseudorandom
(i.e., indistinguishable from random). The scheme, however, relies on addi-
tional use of symmetric-key encryption. Other properties shared by both of the
schemes are:

—The space complexity of the public information is the same as that of storing
G and is asymptotically optimal.

—The private information at a node consists of a single key.

—The derivation by a node of a descendant node’s access key requires the
number of operations linear in the distance between the nodes.

—Updates are handled locally in the hierarchy and do not “propagate” to
descendants or ancestors of the affected part of the graph, while many other
schemes require rekeying of other nodes following a deletion.

—Our scheme is resistant to collusion in that no subset of nodes can conspire
to gain access to any node that is not already legally accessible.

We address key management at the levels of both access classes and individual
users, while other schemes manage keys only at one of these levels.

In the schemes, we rely on the following assumptions: there is a trusted
central authority that can generate and distribute keys (e.g., an administra-
tor within the organization). The security of our schemes relies on the use
of pseudorandom functions. Additionally, the security of the extended scheme
relies on encryption with certain properties.

We also show that our solution can be easily extended to cover access
models that go beyond the traditional inheritance of privilege. More precisely,
we give extensions that enable normal as well as reverse inheritance in the
graph (i.e., access to objects down or up in the hierarchy) and also allow for
fixed-depth inheritance. Such extensions are useful not only in the context of
other standard models such as Bell-LaPadula [Bell and LaPadula 1973], but

1Even though the scheme can be applied to graphs that contain cycles, we do not foresee a setting
in which such access graphs are useful. That is, since all nodes comprising a cycle have identical
privileges, they can be merged into a single node. Thus, in this work we restrict our attention to
directed acyclic graphs.
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can also apply, for instance, to RBAC (e.g., reverse limited-depth inheritance
permits an employee to have access to documents stored at the level of the de-
partment of that employee); this model can cover a much richer set of access
control policies than that of other schemes. We model these extensions after
Crampton’s work [Crampton 2003], and they do not increase the space or com-
putational complexity of our schemes.

A substantial part of this work is dedicated to improving efficiency of
key derivation time for deep hierarchies. Insertion of additional (so called
“shortcut”) edges in an n-node tree or chain allows to lower efficiency of key
derivation to a small constant number of operations in the worst case with an
asymptotically small increase in public information (such as O(log∗ n)). For
more general graphs, we extend the solution by employing a technique that
consists of addition of dummy vertices and allows us to perform dimension
reduction on the graph. The result of this technique is O(d) key derivation
time for access hierarchies of dimension d with an increase in public storage of
O(logd−1

n) compared to that of one-dimensional graphs. Our solution is flexi-
ble in that it allows a trade-off between key derivation time and public storage
at the server.

1.3 Organization

We give an overview the literature on key management for access control
in Section 2, while Section 3 contains a formal description of the problem.
Section 4 presents our base scheme along with its security proof against key
recovery. In Section 5 we present an extension of the base scheme, which is
proven secure w.r.t. the stronger security notion of key indistinguishability. In
Section 6, we describe how to deal with dynamic changes to the access graph,
while Section 7 suggests extensions that permit the scheme’s usage with
other access models given in Crampton [2003]. Section 8 presents our tech-
niques to improve efficiency of key derivation. Finally, Section 9 concludes the
article.

2. RELATED WORK

The first work that addressed the problem of key management in hierarchical
access control was by Akl and Taylor [1983]. Since then a large number of
publications [Birget et al. 2001; Chang and Buehrer 1993; Chang et al. 2004;
Chen et al. 2004; Chick and Tavares 1990; Chien and Jan 2003; Chou et al.
2004; Das et al. 2005; Ferrara and Masucci 2003; Harn and Lin 1990; He et al.
2003; Hwang 1999b,a; Hwang and Yang 2003; Liaw et al. 1993; Lin 2001; Lin
et al. 2003; MacKinnon et al. 1985; Ohta et al. 1991; Ray et al. 2002; Sandhu
1987, 1988; Santis et al. 2004; Sun and Liu 2004; Tsai and Chang 1995; Zhang
and Wang 2004; Zheng et al. 1992, 1993; Zhong 2002, and others] have im-
proved existing key assignment schemes, especially in the recent years. All
of these approaches assume existences of a central authority (CA) that main-
tains the keys and related information. Most of them (and our scheme as well)
are also based on the idea that a node in the hierarchy can derive keys for its
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descendants. Due to the large number of previous publications, we only briefly
comment on their basic ideas and efficiency in comparison to our scheme.

A relatively large number of schemes on this topic have been shown to be
either insecure with respect to the security statements made in these works
[Yeh et al. 1998; Wu and Chang 2001; Shen and Chen 2002; Tzeng 2002; Huang
and Chang 2004] or incorrect [Chen and Chung 2002]. Therefore, we do not
take these schemes into consideration in our further discussion.

A significant number of schemes, for example, Akl and Taylor [1983];
MacKinnon et al. [1985]; Harn and Lin [1990]; Chang and Buehrer [1993];
Hwang [1999a]; He et al. [2003]; Chick and Tavares [1990]; Ohta et al. [1991];
Hwang and Yang [2003]; Ray et al. [2002]; Lin et al. [2003]; and Santis et al.
[2004], operate large numbers computed as a product of up to O(n) co-prime
numbers or, alternatively, up to O(n) large numbers, where n is the number of
nodes in the graph. Such numbers can grow to n bits long and are prohibitively
large for most hierarchies. While in many of these approaches key derivation
might seem consisting of one division and one modular exponentiation oper-
ation, in practice, division of two numbers even O(n) bits long involves O(n2)
operations, in addition to the use of expensive public-key crypto operations.
Our key derivation, on the other hand, even without efficiency improvements
is bounded by the depth of the access hierarchy and can be implemented using
O(n) hash operations in the worst case (i.e., then the depth of the hierarchy is
O(n)).

Work of Liaw et al. [1993] and Sandhu [1987; 1988] is limited to trees
and thus is of limited use. Work of Birget et al. [2001]; Sun and Liu [2004]
and Zhang and Wang [2004] is concerned with a slightly different model hav-
ing a hierarchy of users and a hierarchy of resources. The scheme of Birget
et al. [2001], however, is not dynamic; and in Sun and Liu [2004]; and Zhang
and Wang [2004] there are high rekeying overheads for additions/deletions
(particularly because of slightly different requirements of the scheme) and the
number of keys for a class is large for large hierarchies.

The work of Ferrara and Masucci [2003] gives an information-theoretic
approach, in which each user might have to store a large number of keys (up
to O(n)), and insertions/deletions result in many changes. The scheme of Wu
and Wei [2004] uses modular exponentiation, and additions/deletions require
rekeying of all descendants. A number of schemes [Das et al. 2005; Tsai and
Chang 1995; Chang et al. 2004] are based on interpolating polynomials and
give reasonable performance. In Tsai and Chang [1995] and Das et al. [2005],
however, private storage at a node is up to O(n) and additions/deletions require
rekeying of ancestors. As was already mentioned above, we avoid re-keying on
additions/deletions and store only one key per node. In Chang et al. [2004],
key derivation is less efficient than in our scheme, also public storage space is
larger. Even though the authors speculate that schemes that perform the key
derivation process iteratively are inefficient (which is the case in our scheme),
their key derivation is less efficient due to usage of expensive modular expo-
nentiation operations and interpolating polynomial evaluation.

Schemes that utilize sibling intractable function families (SIFF) [Zheng
et al. 1992, 1993] are the only efficient approaches among early schemes. In
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Table I. Comparison with Previous Work

Private Public Changes Proof of
Scheme storage storage Key derivation I/D/R security

[Lin 2001] k 2k|E| (3cH + 4cXOR)ℓ L/NL/L No

[Zhong 2002] k (k + k1)|E| (cH + 2cXOR)ℓ L/NL/L No

[Chien and Jan 2003] k k|E| (cH + cXOR)ℓ L/NL/L No

[Chen et al. 2004] k k|E| (cD + cH + cXOR)ℓ L/NL/L No

Ours k k|E| (cH + cXOR)ℓ L/L/L Yes

these schemes, there is only one secret key per class, key derivation is a chain
of SIFF function applications which can be implemented using polynomials.
However, additions and deletions in Zheng et al. [1992] require rekeying of all
descendants and in Zheng et al. [1993] all descendants should be rekeyed when
a node is deleted.

A number of recent schemes [Chen et al. 2004; Chien and Jan 2003; Chou
et al. 2004; Lin 2001; Zhong 2002] use overall structure similar to ours and
have performance comparable to our base scheme. Chou et al. [2004], how-
ever, does not address dynamic changes, and the scheme is less efficient than
ours because of additional usage of modular multiplication. Chen et al. [2004]
requires larger public storage, key derivation is slower because of additional
usage of encryption, and the ex-member problem is not addressed that will
require to rekey all descendants on deletions. Compared to the schemes Lin
[2001] and Zhong [2002], our approach is simpler than both of them. It is
also more efficient than the first scheme (by a constant factor), and uses less
space than both of them (by a constant factor). In addition, in both of these
schemes, all descendants have to be rekeyed when a class is being deleted to
combat the ex-member problem. Chien and Jan [2003] uses only hash func-
tions and achieves performance closest to our base scheme; deletions, however,
require rekeying of all descendants. In our scheme, on the other hand, dy-
namic changes to the graph are handled locally (i.e., private information at
other nodes is not affected and no other nodes need to be rekeyed, only public
information associated with the graph changes). Another very important dis-
tinction between the present work and these publications is that our scheme
is provably secure. In addition, our extended scheme provides even stronger
security guarantees (i.e., key indistinguishability) that have not been shown
before. Techniques for improving efficiency are also an important contribution
of this work.

Table I gives a comparison of our base scheme and other schemes. Private
storage is measured per access class. Public storage is measured for the entire
access graph (overhead introduced by the scheme, without information needed
to represent the graph itself), and only the dominant term is given. The key
derivation time shown reflects maximum computation needed to derive the key
of node w given the key of node v, assuming there is a path of length ℓ between
v and w.

In the table, k is a security parameter that corresponds to the size of the se-
cret key (and in most cases is the size of the output produced by a cryptographic
hash function H); k1 is another security parameter (of comparable value); cH
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denotes computation required by a single invocation of H2; cXOR corresponds
to computation needed to perform bitwise XOR of two strings of size O(k); and
cD is computation needed for symmetric key decryption. In the table, changes
to the hierarchy include insertion (I), deletion (D), and rekeying (R); L stands
for “local” and NL for “non-local.” In all of the schemes that list “non-local”
for deletions, such operations require rekeying of all descendant classes in the
hierarchy.

Note that in different schemes, the authors might make assumptions on
what information is public and what is stored with the client, which differs
from what we present here. For the sake of comparison, however, we unify the
schemes and list their capabilities, which may or may not be different from the
results reported by the authors. In addition, results of Lin [2001] and Chien
and Jan [2003] rely on tamper-resistance of the clients.

3. PROBLEM DEFINITION

There is a directed access graph G = (V, E, O) s.t. V is a set of vertices
V = {v1, . . ., vn} of cardinality |V| = n, E is a set of edges E = {e1, . . ., em}
of cardinality |E| = m, and O is a set of objects O = {o1, . . ., ok} of cardinality
|O| = k. Each vertex vi represents a class in the access hierarchy and has a set
of objects associated with it. Function O : V → 2O maps a node to a unique set
of objects such that |O(vi)| ≥ 0 and ∀i∀ j, O(vi) ∩O(v j) = ∅ iff i 6= j. (For brevity,
we use notation Oi to mean O(vi).) When the set of edges E or the set of objects
O is not essential to our current discussion, we may omit it from the definition
of the graph and instead use notation G = (V, O) or G = (V, E), respectively.

In a directed graph G = (V, E), we define an ancestry function Anc(vi, G)
which is a set such that v j ∈ Anc(vi, G) if there is a path from v j to vi in G.
We also define the set of descendants of node vi as Desc(vi, G), where v j ∈
Desc(vi, G) if there is a path from vi to v j in G. For a directed graph G = (V, E),
we use a function Pred(vi, G) to denote the set of immediate predecessors of
vi in G, that is, if v j ∈ Pred(vi, G) then there is a directed edge from v j to vi

in G. Similarly, we define Succ(vi, G) to be the set of immediate successors of
vi in G. When it is clear what graph we are discussing, we omit G from the
notation and instead use the shorthand notation Anc(vi), Desc(vi), Succ(vi), and
Pred(vi). We consider a node to be its own ancestor and descendant, but we do
not consider it to be a predecessor or successor of itself.

In the access hierarchy, a path from node vi to node v j means that any subject
that can assume access rights at class vi is also permitted to access any object
o ∈ O j at class v j. The function O∗ : V → 2O maps a node vi ∈ V to a set of
objects accessible to a subject at class vi (we use O∗i as a shorthand for O∗(vi));
the function is defined as O∗i =

⋃

v j∈Desc(vi)
O j.

Intuitively, a key allocation mechanism aims at implementing such form of
access control by assigning a cryptographic key ki to each class vi. Such key ki

is then used to guard access to objects of class vi (for example, by encrypting

2Our solution uses pseudorandom function F instead of using H directly. F, however, can be
implemented using solely a hash function, and for the sake of uniformity we list cH for our scheme
as well.
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object o ∈ Oi under key ki), and is made available to every users at class vi (and
at any of its ancestor classes). It follows that each user ought to store (or at
least be able to derive) the cryptographic key ki associated with the class vi to
which he belongs, as well as the keys k j’s of all classes v j descendants of vi. For
the sake of generality, we do not impose any specific structure on the secret
information actually stored by users at class vi; we denote such information
by Si.

In summary, Si denotes the secret information that each user at class vi

stores, while ki (which is derivable from Si) is the cryptographic key neces-
sary to gain access to objects at class vi. We formalize this intuition with the
following definition.

Definition 3.1. A Key Allocation (KA) scheme is a pair of polynomial-time
algorithms (Set, Derive), defined as follows:

—Set(1ρ, G) is a randomized algorithm that on input a security parameter 1ρ

and an access graph G, outputs two mappings: (1) a public mapping Pub :
V ∪ E → {0, 1}∗, associating a public label ℓi to each node vi and a public
label yij to each edge (vi, v j) in the graph; (2) a secret mapping Sec : V →
{0, 1}ρ × {0, 1}ρ , associating a secret information Si and a cryptographic key
ki to each node vi in G. (No secret information is associated to edges in G.)

—Derive(G, Pub, vi, v j, Si) is a deterministic algorithm taking as input the ac-
cess graph G, the public information Pub output by Set, a source node vi, a
target node v j and the secret information Si of node vi. It outputs the cryp-
tographic key k j associated to node v j if v j ∈ Desc(vi), or a special rejection
symbol ⊥ otherwise.

For correctness, the Set and Derive algorithms of a Key Allocation scheme
should also satisfy the following constraint: ∀vi ∈ V, ∀v j ∈ Desc(vi),

Pr



k j = Derive(G, Pub, vi, v j, Si)

∣

∣

∣

∣

∣

∣

(Pub, Sec)← Set(1ρ, G),
(Si, ki)← Sec(vi),
(Sj, k j)← Sec(v j)



 = 1

where the probability is over the random choices of the Set algorithm.

We now formalize two levels of security: Key Recovery and Key Indistinguisha-

bility. Informally, in defining these notions of security, we allow an adversary
to corrupt keys at various nodes in the graph. The adversary then chooses a
node v∗ on which it would like to be challenged (subject to the constraint that
the adversary does not already have access to that node’s key or a key of any
of its ancestors). In the case of key recovery, the adversary’s goal is to compute
the cryptographic key associated with node v∗. In the case of key indistin-
guishability, the adversary is given either v∗’s real key or a random key chosen
afresh (with the two possibility being equally likely) and is asked to determine
whether such key corresponds to the v∗’s real key or not.
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Definition 3.2 (Key Recovery). A Key Allocation scheme is secure w.r.t. key
recovery if no polynomial time adversary A has a non-negligible advantage (in
the security parameter ρ) against the challenger in the following game:

—Setup: The challenger runs Set(1ρ, G), and gives the resulting public infor-
mation Pub to the adversary A.

—Attack: The adversary issues, in any adaptively chosen order, a polynomial
number of Corrupt(vi) queries, which the challenger answers by retrieving
(Si, ki) = Sec(vi) and giving Si to A.

—Break: The adversary outputs a node v∗, subject to v∗ 6∈ Desc(vi) for any vi

asked in Phase 1, along with her best guess k′v∗ to the cryptographic key kv∗

associated with node v∗.

We define the adversary’s advantage in attacking the scheme as:

Adv
K R
A

.
= Pr[k′v∗ = kv∗ ].

Definition 3.3 (Key Indistinguishability). A Key Allocation scheme is key
indistinguishable if no polynomial time adversary A has a non-negligible ad-
vantage (in the security parameter ρ) against the challenger in the following
game:

—Setup: The challenger runs Set(1ρ, G), and gives the resulting public infor-
mation Pub to the adversary A.

—Phase 1: The adversary issues, in any adaptively chosen order, a polynomial
number of Corrupt(vi) queries, which the challenger answers by retrieving
(Si, ki) = Sec(vi) and giving Si to A.

—Challenge: Once the adversary decides that Phase 1 is over, it specifies a
node v∗, subject to v∗ 6∈ Desc(vi) for any vi asked in Phase 1. The challenger
picks a random bit b∗ ∈ {0, 1}: if b∗ = 0, it returns to A the cryptographic
key kv∗ associated with node v∗; otherwise, it returns to A a random key k̄v∗

of the same length ρ.

—Phase 2: The adversary can issue more Corrupt(vi) queries, obtaining back
the corresponding key Si. Note that A cannot ask Corrupt(vi) queries for
vi ∈ Anc(v∗).

—Guess: The adversary outputs a bit b ∈ {0, 1} as her best guess to whether
she was given the actual key kv∗ or a random key. A wins the game if b = b∗.

We define the adversary’s advantage in attacking the scheme as:

Adv
KI
A

.
=

∣

∣

∣

∣

Pr[b = b∗]−
1

2

∣

∣

∣

∣

.

Remark. In formalizing the security of a key allocation scheme, Corrupt
queries are answered with respect to the secret info Si, whereas the
Break/Challenge phases relate to the cryptographic key kv∗ . This is because
access to an object at class v∗ is granted by the cryptographic key kv∗ ; thus, to
“test” the ability of the adversary to break the access control mechanism, we
challenge her to either recover the real cryptographic key (for Key Recovery)
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or to tell the real cryptographic key apart from some random string (for Key

Indistinguishability).

4. BASE SCHEME

This section describes our scheme in which every node has one key associated
with it, the public information is linear in the size of the access graph G, and
computation by node v of a key that is ℓ levels below it can be done in ℓ evalu-
ations of a pseudorandom function, which can be implemented as, e.g., HMAC
[Bellare et al. 1996] built using only a cryptographic hash function. Here we
focus on key allocations for a static access hierarchy. An extension of this
scheme is given in Section 5, and its support for dynamic access hierarchies is
discussed in Section 6.

Our construction is based on the use of pseudorandom functions:

Definition 4.1 Pseudorandom Function (PRF) Family . Let {Fρ}ρ∈N be a
family of functions where Fρ : Kρ × Dρ → Rρ . For k ∈ Kρ , denote by
F

ρ

k : Dρ → Rρ the function defined by F
ρ

k (x)
.
= Fρ(k, x). Let Randρ denote

the family of all functions from Dρ to Rρ , i.e., Randρ .
= {g | g : Dρ → Rρ}.

Let A(1ρ) be an algorithm that takes as oracle a function g : Dρ → Rρ , and

returns a bit. Function g is either drawn at random from Randρ (i.e., g
r←

Randρ ), or set to be F
ρ

k , for a random k
r← Kρ . Consider the two experiments:

Experiment ExpPRF−1
F,A (ρ) Experiment ExpPRF−0

F,A (ρ)

k
r← Kρ g

r← Randρ

d← A F
ρ

k (1ρ ) d← Ag(1ρ)
Return d Return d

The PRF-advantage of A is then defined as:

Adv
PRF
F,A (ρ)

.
=| Pr[ExpPRF−1

F,A (ρ) = 1]− Pr[ExpPRF−0
F,A (ρ) = 1] | .

{Fρ}ρ∈N is a PRF family if for every ρ ∈ N, the function Fρ is computable in

time polynomial in ρ, and if the function AdvPRF
F,A (ρ) is negligible (in ρ) for every

polynomial-time distinguisher A(1ρ) that halts in time poly(ρ).

Assume that we are given a PRF family {Fρ}ρ∈N where Fρ : {0, 1}ρ×{0, 1}ρ →
{0, 1}ρ .3 Given an access graph G = (V, E) and a security parameter ρ, the
Set(1ρ, G) algorithm proceeds as follows:

—For each vertex vi ∈ V, pick a random label ℓi ∈ {0, 1}ρ and a random value
Si ∈ {0, 1}ρ , and set ki

.
= Si. An entity that is assigned access levels V ′ ⊆ V is

given all keys for their access levels v j ∈ V ′.

—For each edge (vi, v j) ∈ E, compute yij
.
= k j⊕ F(ki, ℓ j).

3To simplify the notation, we will omit the superscript ρ from Fρ wherever the security parameter
is clear by the context.
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Fig. 1. Key allocation for example access graph.

The output of Set(1ρ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗
and Sec : V → {0, 1}ρ × {0, 1}ρ , defined as:

Pub : vi 7→ ℓi Pub : (vi, v j) 7→ yij

Sec : vi 7→ (Si, ki)

We now describe the Derive algorithm. To obtain the cryptographic key k j of
a descendant v j, a node vi sequentially processes every edge (vı̄, v̄ ) on the path
between vi and v j. Given an edge (vı̄, v̄ ) for which both vı̄’s private key kı̄ and
the stored public information ℓ̄ and yı̄̄ are known, vı̄ can generate v̄ ’s private
information k̄ thanks to the fact that yı̄̄ , is defined as yı̄̄

.
= k̄ ⊕ F(kı̄, ℓ̄ ).

Due to the sequential nature of key generation on the path between vi and
v j, vi will be able to derive keys of all necessary nodes and produce key k j.

Example. Figure 1 shows key allocation for a graph more complicated than
a tree, for which we give two examples. First, it is possible for the node with k1

to generate key k2, because that node can compute F(k1, ℓ2) and use it, along
with the public edge information, to obtain k2. The node with k3, on the other
hand, cannot generate k2, since this would require inversion of the F function.

THEOREM 4.2. The above scheme is secure against key-recovery (c.f. Defini-

tion 3.2) for any directed acyclic graph (DAG) G, assuming the security of the

pseudorandom function family {Fρ}ρ∈N (c.f. Definition 4.1).

PROOF. In the security proof, we will follow the same structural approach
used in Dodis et al. [2005], first advocated in Cramer and Shoup [2003]. Start-
ing from the actual attack scenario, we consider a sequence of hypothetical
games, all defined over the same probability space. In each game, the adver-
sary’s view is obtained in different ways, but its distribution is still indistin-
guishable among the games.

Roughly speaking, proving the theorem amounts to showing that the only
way to break the key recovery security of the base scheme of Section 4 is by
breaking the pseudorandom function F. To this aim, we need to show how to
turn an adversary A attacking the scheme into an adversary AF attacking F.

One difficulty with this approach is that whereas A can choose which part
of the public info to attack (via the challenge query), the adversaries AF does
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not have such flexibility. The standard way to solve this technical problem is
to “guess” the node v∗ for which adversary A will ask the challenge query and
construct adversaries AF based on the assumption that this guess is correct.
In the rest of the proof, we will assume that we correctly guessed the challenge
node v∗. Since such a priori guess is correct with 1/n chance, this affects the
exact security of the reduction proof by a factor of n.

Let G′ = (V ′, E′) be the subgraph of G induced by restricting the set of
vertices V to the set V ′ of the ancestors of v∗, including v∗ itself. Let v1, . . . , vh ≡
v∗ be any topological ordering of the vertices in G′.

To prove the theorem, we define a sequence of indistinguishable games G0,
G1, . . ., Gh, all operating over the same underlying probability space. Start-
ing from the actual adversarial game G0 (as defined in Definition 3.2), we in-
crementally make slight modifications to the behavior of the challenger, thus
changing the way the adversary’s view is computed, while maintaining the
views’ distributions indistinguishable among the games. In the last game, it
will be clear that the adversary has (at most) a negligible advantage; by the
indistinguishability of any two consecutive games, it will follow that also in
the original game the adversary’s advantage is negligible. Recall that in each
game G j, the goal of adversary A is to guess the cryptographic key kv∗ associ-
ated with node v∗. Let T j be the event that k′v∗ = kv∗ in game G j.

Game G0. Define G0 to be the original game as described in Definition 3.2.

Game G1. This game is identical to game Game G0, except that in G1 the
Set(1ρ, G) algorithm is modified in such a way that the secret key kv1

of node
v1 is never used in the creation of the public information. Instead, for each
edge (v1, v j) in the graph G coming out of node v1, the public information y1 j

associated with the edge (v1, v j) is selected at random from {0, 1}ρ , i.e., y1 j
r←

{0, 1}ρ .
Note that such modification essentially amounts to substituting any

occurrences of the pseudorandom function F(kv1
, ·) in G0 with a truly random

function. Since kv1
does not occur anywhere else in the attack game, such mod-

ification is warranted by the security of the PRF family {Fρ}ρ∈N. Formally,
Lemma 4.3 below shows that any non-negligible difference in A’s behavior
between game G0 and G1 can be used to construct a probabilistic polynomial-
time algorithm AF that is able to break the pseudorandom function F with
non-negligible advantage. Hence,

∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ ǫPRF (1)

where ǫPRF is an upper bound on the advantage AdvPRF
F,AF

(ρ) of any probabilistic
polynomial-time adversary AF against the security of the pseudorandom func-
tion F. Notice that ǫPRF is negligible by our security assumption on the PRF
family.

We now generalize the description of game G1 to any game in the sequence
G1, . . ., Gh.

Game Gi (1 ≤ i ≤ h). This game is identical to game Gi−1, except that the
Set(1ρ, G) algorithm is modified in such a way that the secret key kvi

of node
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vi is never used in the creation of the public information. Observe that the
cryptographic key kvi

occurs in game Gi−1 only as the key to the pseudorandom
function F(·, ·). In particular, no information about kvi

is present in the public
information associated with the edges going into node vi thanks to the modifi-
cations carried out in games G1, . . ., Gi−1, and to the fact that we are working
through the ancestors of v∗ in the topological ordering.

Thus, to change game Gi−1 into game Gi, for each edge (vi, v j) coming out of
node vi, we draw the public information yij at random from {0, 1}ρ (rather than
computing it as yij

.
= F(kvi

, ℓ j)). Such modification amounts to substituting all
occurrences of F(kvi

, ·) in Gi−1 with a truly random function. Since kvi
does not

occur anywhere else in Gi−1, using a reduction argument along the same line
as that in Lemma 4.3, we can conclude that such modification is warranted by
the security of the PRF family {Fρ}ρ∈N, that is:

∣

∣ Pr[Ti]− Pr[Ti−1]
∣

∣ ≤ ǫPRF (2)

To conclude the proof, observe that no information about the secret key
kv∗ (= kvh

) is present in the adversary’s view for game Gh. It follows that the
probability of a correct guess for kv∗ by the adversary in game Gh is just 1/2ρ ,
that is:

Pr[Th] =
1

2ρ
(3)

Combining Equation (3) with the intermediate results in Equation 2, we can
conclude that

Pr[T0] ≤
1

2ρ
+ h · ǫPRF.

LEMMA 4.3.
∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ ǫPRF

PROOF. Let’s assume we have an adversary A that is able to distinguish be-
tween game G0 and game G1. We describe below how to construct an algorithm
AF that, using A as a black box, is able to distinguish between pseudorandom
and truly random functions.

Algorithm AF plays the PRF game described in Definition 4.1, and is thus
given oracle access to a function g(·) that is either a pseudorandom function,
keyed with a secret value k, or a truly random function.

In order to use algorithm A, AF simulates the environment of A in a way
that interpolates between game G0 and game G1. In other words, if AF is
interacting with a pseudorandom function, then the simulation seen by A pro-
ceeds exactly as in game G0; otherwise, the simulation proceeds exactly as
in game G1.

The first step in AF ’s simulation consists of setting up the access hierarchy
for graph G by running the Set(1ρ , G) algorithm with the following modifica-
tion: for each edge (v1, v j) in the graph G coming out of node v1, the public
information y1 j associated with the edge (v1, v j) is computed via oracle g, i.e.,

y1 j
r← k j ⊕ g(ℓ j). This is equivalent to game G0 when AF ’s oracle computes g
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according to a pseudorandom function, and equivalent to game G1 when AF ’s
oracle computes g completely at random.

After feeding A with the resulting public information, AF can readily reply
to any Corrupt query that A may issue, since AF knows all the secret keys
except for the one associated to node v1. Note that according to the attack
game in Definition 3.3, A cannot ask for such key, since node v1 is among the
ancestors of the challenge node v∗ that adversary A will attack in the Break

stage of the attack game.
Eventually, A outputs her best guess k′v∗ at the secret key corresponding to

node v∗: if k′v∗ = kv∗ , then AF outputs 1, guessing for a pseudorandom function;
otherwise, AF outputs 0, guessing for a truly random function.

Now we have:

ǫPRF ≥ Adv
PRF
F,AF

(ρ)
.
=| Pr[ExpPRF−1

F,A (ρ) = 1]− Pr[ExpPRF−0
F,A (ρ) = 1] |

=| Pr[AF outputs 1 | g is a PRF]− Pr[AF outputs 1 | g is random] |
=| Pr[A guesses kv∗ correctly | g is a PRF]

− Pr[A guessed kv∗ correctly | g is random] |
=| Pr[T0]− Pr[T1] | .

5. THE EXTENDED SCHEME

We now present an extension of the scheme described in Section 4 and prove
it secure w.r.t. Key Indistinguishability (see Definition 3.3) without random
oracles. Note that our base scheme fails to achieve this stronger notion of
security because the adversary will be able to easily test whether the challenge
key it is given corresponds to the actual key of the challenge node v∗ or not.
More precisely, suppose the adversary requests the secret information Sj = k j

corresponding to a child node v j of v∗ (in general, it does not have to be a child
node, any descendant node will permit this attack) and tests it using public

information. Then, the adversary checks F(cv∗, ℓ j) ⊕ yv∗, j
?
= k j, where cv∗ is

the challenge key. If the values match, the adversary can be sure that it was
given the actual key of v∗. Note that the problem is that vi’s key ki is used for
two different purposes: to grant access to objects at vi and to aid derivation
of child keys. To address this issue, we ensure that two different keys are
used for these purposes, both of which can be derived from the node’s secret
information Si: the key ki is used to obtain access to objects, while the key ti
is used for key derivation only. Then, when the adversary is presented with a
challenge key cv∗ , it is no longer possible to use the public information to test
whether cv∗ corresponds to kv∗ or a randomly chosen key.

Our construction is based on the use of a semantically secure symmetric-key
encryption scheme E . Several equivalent formalizations of this security notion
have been proposed in the literature. We report one such definition below; we
refer the reader to Section 5.2 of Goldreich [2004] for a thorough treatment.
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Definition 5.1. A symmetric-key encryption scheme E is a triple of
polynomial-time algorithms (Gen, Enc, Dec) where:

—Gen(1λ) is a randomized algorithm that on input a security parameter 1λ,
outputs a secret key SK and a message space M;

—EncSK(m) is a randomized algorithm that on input a secret key SK and a
message m ∈M, outputs a ciphertext c ∈ {0, 1}∗; and

—DecSK(c) is a deterministic algorithm that on input a secret key SK and a
ciphertext c, outputs a message m̄ ∈M or a special reject symbol ⊥.

For correctness, Gen, Enc, and Dec ought to satisfy the following constraint:

Pr[m̄ = m | (SK, M)
r← Gen(1λ); ∀m ∈ M; m̄← DecSK(EncSK(m))] = 1.

Definition 5.2. An encryption scheme E is semantically secure if no
polynomial-time adversary A has a non-negligible advantage (in the security
parameter λ) against a challenger in the following game:

—Setup: The challenger runs Set(1λ): it keeps secret the resulting secret key
SK and gives the message space M to the adversary A.

—Challenge: The adversary specifies a message m0 ∈ M. The challenger
picks a random bit b∗ ∈ {0, 1}: if b∗ = 0, then it computes c∗ = EncSK(m0);
otherwise it sets c∗ = EncSK($), where $ is a random string of the same length
as m0. The challenger returns c∗ to A.

—Guess: The adversary outputs a bit b ∈ {0, 1} as her best guess to whether
she was given the encryption of m0 or of a random string of the same length
as m0. A wins the game if b = b∗.

We define the adversary’s advantage in attacking the scheme to be

Adv
SEM
A

.
=

∣

∣Pr[A outputs 1 | c∗ = EncSK(m0)]− Pr[A outputs 1 | c∗ = EncSK($)]
∣

∣ .

The extended scheme maintains essentially the same parameters as the one
in Section 4: Every node stores only one random ρ-bit number; the public
information is linear in the size of the access graph G; to derive the key of
a descendant node located ℓ levels below, each node performs ℓ operations.
Additionally, the extended scheme makes use of a semantically secure
symmetric-key encryption scheme E (c.f. Definition 5.1 and Definition 5.2),
and key derivation involves one evaluation of a pseudorandom function
F : {0, 1}ρ × {0, 1}∗→ {0, 1}ρ (c.f. Definition 4.1) and one decryption.

In details, given an access graph G = (V, E) and a security parameter ρ, the
Set(1ρ, G) algorithm proceeds as follows:

—For each vertex vi ∈ V, first pick a random label ℓi ∈ {0, 1}ρ and a random
value Si ∈ {0, 1}ρ ; then compute ti

.
= FSi

(0||ℓi) and ki
.
= FSi

(1||ℓi).

—For each edge (vi, v j) ∈ E, compute rij
.
= Fti(ℓ j) and yij

.
= Encrij

(tj||k j).
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The output of Set(1ρ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗
and Sec : V → {0, 1}ρ × {0, 1}ρ , defined as:

Pub : vi 7→ ℓi Pub : (vi, v j) 7→ yij

Sec : vi 7→ (Si, ki)

We now describe the Derive algorithm. Given G, the public information
Pub, a source node vi, a target node v j and the secret information Si of node
vi, it derives the cryptographic key k j of node v j by considering each edge on
the path4 from vi down to v j in turn, and repeatedly decrypting the public info
associated to such edge. More precisely, Derive(G, Pub, vi, v j, Si) proceeds as
follows:

—If there is no path from vi to v j in G, return ⊥;

—If i = j, retrieve ℓi from Pub and return k j← FSi
(1||ℓi);

—Else, compute ti← FSi
(0||ℓi) and let ı̄

.
= i and t̄ı

.
= ti; then

repeat

let ̄ be the successor of ı̄ in the path from vi to v j;

retrieve ℓ̄ and yı̄̄ from Pub;

rı̄̄ ← Ft̄ı(ℓ̄ );

t̄ ||k̄ ← Decrı̄̄
(yı̄̄ );

ı̄← ̄ ; t̄ı = t̄ ;

until ̄ = j;

return k j.

Figure 2 shows how the key derivation mechanism works for the same toy
example given in Figure 1.

Next, we prove that the extended scheme described in this section is key
indistinguishable (c.f. Definition 3.3), following the same approach as in the
proof of Theorem 4.2.

THEOREM 5.3. The above extended scheme is key indistinguishable for any

directed acyclic graph G, assuming the security of the pseudorandom function

family {Fρ}ρ∈N and the security of the encryption scheme E .

PROOF. Roughly speaking, proving the theorem amounts to showing that
the only way to break the key indistinguishability of the extended scheme of
Section 5 is by either breaking the pseudorandom function F or the encryption
scheme E . To this aim, we need to show how to turn an adversary A attack-
ing the scheme into either an adversary AF attacking F or an adversary AE

attacking E .
One difficulty with this approach is that whereas A can choose which part

of the public info to attack (via the challenge query), the adversaries AF and
AE do not have such flexibility. As noted in Theorem 4.2, the standard way
to solve this technical problem is to guess the node v∗ for which adversary A

4If there is more than one path, pick one arbitrarily, for example, the shortest path from vi to v j.
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Fig. 2. Key allocation for extended example access graph.

will ask the challenge query and construct adversaries AF (or AE ) based on the
assumption that this guess is correct.

In the rest of the proof, we will assume that we correctly guessed the chal-
lenge node v∗. Since such a priori guess is correct with 1/n chance, this affects
the exact security of the reduction proof by a factor of n.

To prove the theorem, we again define a sequence of indistinguishable
games G0, G1, . . ., where G0 is the actual adversarial game (as defined in
Definition 3.3), and where the adversary’s advantage in the last game will
only be negligible. Recall that in each game G j, the goal of adversary A is to
output b ∈ {0, 1} which is her best guess to the bit b∗ chosen by the challenger
in the attack game described in Definition 3.3. Let T j be the event that b = b∗

in game G j.
For clarity of exposition, we first discuss two special cases, which exemplify

the most technical aspects of the proof. Afterwards, we describe how to tackle
the general case.

First special case. v∗ is one of the roots5 in G.

Game G0. Define G0 to be the original game as described in Definition 3.3.

Game G1. This game is identical to game G0, except that in G1 the Set(1ρ, G)
algorithm is modified in such a way that the cryptographic key kv∗ is infor-
mation theoretically hidden from the view of adversary A. To this aim, we
compute

tv∗ ← R1(0||ℓv∗ ), kv∗ ← R1(1||ℓv∗),

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function.

5By root in a DAG we mean any minimal node in the topological order of G.
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Note that such modification essentially amounts to substituting any occur-
rences of the pseudorandom function FSv∗ (·) with a truly random function R1(·).
Since Sv∗ does not occur anywhere else in the attack game, such modification is
warranted by the security of a pseudorandom function. Formally, Lemma 5.4
below shows that any non-negligible difference in behavior between game G0

and G1 can be used to construct a probabilistic polynomial-time algorithm
AF that is able to break the pseudorandom function F with non-negligible
advantage. Hence,

∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ ǫPRF, (4)

where ǫPRF is an upper bound on the advantage AdvPRF
F,AF

of any probabilistic
polynomial-time adversary AF against the security of the pseudorandom func-
tion F. Notice that ǫPRF is negligible by our security assumption on the PRF
family.

It remains to notice that in game G1, the challenge no longer contains any
information about b∗. This is because kv∗ is now a random value, exactly as
k̄v∗ . Moreover, since v∗ is a root of G, it has no incoming edges and thus the
public info Pub does not contain any label yiv∗ (which would be an encryption of
tv∗ ||kv∗ ). Therefore, kv∗ is independent of any other info in the adversary view,
and thus it is indistinguishable from k̄v∗ . It follows that the adversary’s view
is exactly the same regardless of the value of b∗, and thus:

Pr[T1] = 1/2 (5)

Combining Equations (4) and (5), the thesis follows.

LEMMA 5.4.
∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ ǫPRF

PROOF. Let’s assume we have an adversary A that is able to distinguish
between game G0 and game G1. We describe below how to construct an algo-
rithm AF that, using A as a black-box, is able to distinguish between pseudo-
random and truly random functions.

Algorithm AF plays the PRF game described in Definition 4.1, and is thus
given oracle access to a function g(·) that is either a pseudorandom function,
keyed with a secret value k, or a truly random function.

In order to use algorithm A, AF simulates the environment of A in a way
that interpolates between game G0 and game G1. In other words, if AF is inter-
acting with a pseudorandom function, then the simulation seen by A proceeds
exactly as in game G0; otherwise, the simulation proceeds exactly as in game
G1.

The first step in AF ’s simulation consists of setting up the access hierarchy
for graph G by running the Set(1ρ , G) algorithm with the following modifica-
tion: the cryptographic keys tv∗ and kv∗ are computed via oracle g as follows:

tv∗ ← g(0||ℓv∗ ), kv∗ ← g(1||ℓv∗ )

This is equivalent to game G0 when AF ’s oracle computes g according to a
pseudorandom function, and equivalent to game G1 when AF ’s oracle computes
g completely at random.
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After feeding A with the resulting public information, AF can readily reply
to any Corrupt query that A may issue, since AF knows all the secret keys
except for the one associated to nodes v∗. Note that according to the attack
game in Definition 3.3, A cannot ask for Sv∗ , since adversary A will attack v∗

in the Break stage of the attack game.
Upon receiving the challenge query from A, AF picks a random bit b∗ ∈

{0, 1}: if b∗ = 0, then AF returns to A the cryptographic key kv∗ associated to
node v∗; otherwise, AF returns to A a random key k̄v∗ of the same length of kv∗ .

Eventually, A a outputs bit b as her best guess at whether she was given
the actual key kv∗ or a random key: if b = b∗, then AF outputs 1, guessing for a
pseudorandom function; otherwise, AF outputs 0, guessing for a truly random
function.

Now we have

ǫPRF ≥ AdvPRF
F,AF

(ρ)
.
=| Pr[ExpPRF−1

F,A (ρ) = 1]− Pr[ExpPRF−0
F,A (ρ) = 1] |

=| Pr[AF outputs 1 | g is a PRF]− Pr[AF outputs 1 | g is random] |
=| Pr[A guesses b∗ correctly | g is a PRF]

− Pr[A guessed b∗ correctly | g is random] |
=| Pr[T0]− Pr[T1] | .

Second special case. v∗has a single predecessor p which is one of G’s roots.

Game G0, Game G1. The first two games are defined as in the first special
case.

Game G(a)
2 . This game is identical to game G1, except that in Game G(a)

2 we
further modify the Set(1ρ , G) algorithm so that the secret information tp is
information theoretically hidden from the view of adversary A. To this aim,
we compute

tp← R1(0||ℓp), kp← R1(1||ℓp),

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function.
Note that such modification essentially amounts to substituting any occur-

rences of the pseudorandom function FSp
(·) with a truly random function R1(·).

Since Sp does not occur anywhere else in the attack game, using a reduction
argument along the same line as that in Lemma 5.4, we can conclude that such
modification is warranted by the security of the PRF family {Fρ}ρ∈N, that is:

∣

∣ Pr[T(a)
2 ]− Pr[T1]

∣

∣ ≤ ǫPRF (6)

Game G(b )
2 . To turn game G(a)

2 into game G(b )
2 , for any child s of p, we compute

rps← R2(ℓs),

where R2 : {0, 1}∗ → {0, 1}∗ is a truly random function.
Note that such modification essentially amounts to substituting any occur-

rences of the pseudorandom function Ftp
(·) with a truly random function R2(·),
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which is safe since p is a root of G, and thus tp does not occur anywhere else
in the adversarial view (in particular, it is not encrypted within any label in
Pub). Therefore, using a reduction argument along the same line as that in
Lemma 5.4, we can conclude that such modification is warranted by the secu-
rity of the PRF family {Fρ}ρ∈N, that is:

∣

∣ Pr[T(b )
2 ]− Pr[T(a)

2 ]
∣

∣ ≤ ǫPRF. (7)

Game G(c)
2 . This game is exactly as G(b )

2 except that the label ypv∗ associated
with edge (p, v∗) ∈ E is now computed as

ypv∗ ← Encrpv∗ ($||$),

where $ denotes a random value.
Note that this modification amounts to changing the plaintext within a ci-

phertext, which was encrypted under a key that is independent from the ad-
versary view (thanks to the changes in game G(b )

2 ). Formally, Lemma 5.5 below

shows that any non-negligible difference in behavior between games G(b )
2 and

G(c)
2 can be used to construct a probabilistic polynomial-time algorithm AE that

is able to break the security of the encryption scheme E with non-negligible
advantage. Hence,

∣

∣ Pr[T(c)
2 ]− Pr[T(b )

2 ]
∣

∣ ≤ ǫSEM (8)

where ǫSEM is an upper bound on the advantage AdvSEM
AE

of any probabilistic
polynomial-time adversary AE against the security of the encryption scheme
E . Notice that ǫSEM is negligible by our security assumption on the encryption
scheme.

It remains to notice that in game G(c)
2 , the challenge no longer contains any

information about b∗. This is because, thanks to the changes in this game,
the label ypv∗ of the only incoming edge (p, v∗) ∈ E no longer contains any info
about kv∗ , which is therefore independent from the adversary view. Thus,

Pr[T(c)
2 ] = 1/2. (9)

Combining Equations (4), (6), (7), (8) and (9), the thesis follows.

LEMMA 5.5.
∣

∣ Pr[T(c)
2 ]− Pr[T(b )

2 ]
∣

∣ ≤ ǫSEM

PROOF. Let’s assume we have an adversary A that is able to distinguish
between game G(b )

2 and game G(c)
2 . We describe below how to construct an al-

gorithm AE that, using A as a black-box, is able to break the semantic security
of the encryption scheme E with non-negligible advantage.

Algorithm AE plays the SEM game described in Definition 5.2. In order to
use algorithm A, AE simulates the environment of A in a way that interpolates
between game G(b )

2 and game G(c)
2 . In other words, if AE ’s challenge is answered

with the encryption of the message AE asked for, then the simulation seen by
A proceeds exactly as in game G(b )

2 ; otherwise (i.e., AE gets back a random

encryption as challenge), the simulation proceeds exactly as in game G(c)
2 .

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 18, Pub. date: January 2009.



18: 22 · M. J. Atallah et al.

The first step in AE ’s simulation consists of setting up the access hierarchy
for graph G by running the Set(1ρ , G) algorithm with the following modifica-
tion: first, AE asks to be challenged on the message m0

.
= tv∗ ||kv∗ and gets back

a ciphertext c∗ which is the encryption of either m0 or a random string of the
same length. Then, AE computes the label ypv∗ associated with edge (p, v∗) ∈ E

as follows:

ypv∗ ← c∗.

This is equivalent to game G(b )
2 when AE ’s challenger computes c∗ as the en-

cryption of m0, and equivalent to game G(c)
2 otherwise.

After feeding A with the resulting public information, AE can readily reply
to any Corrupt query that A may issue, since AE knows all the secret keys
except for the one associated to node p. Note that according to the attack
game in Definition 3.3, A cannot ask for such key, since node p is among the
ancestors of the challenge node v∗ that adversary A will attack in the Break

stage of the attack game.
Upon receiving the challenge query from A, AE picks a random bit b∗ ∈

{0, 1}: if b∗ = 0, then AE returns to A the cryptographic key kv∗ associated to
node v∗; otherwise, AE returns to A a random key k̄v∗ of the same length of kv∗ .

Eventually, A outputs a bit b as her best guess to whether she was given
the actual key kv∗ or a random key: if b = b∗, then AE outputs 1, guessing for
encryption of m0; otherwise, AE outputs 0, guessing for encryption of a random
string.

Now we have

ǫSEM ≥ Adv
SEM
AE

=| Pr[AE outputs 1 | c∗ is the encryption of m0]

− Pr[AE outputs 1 | c∗ is the encryption of a random string] |
=| Pr[A guesses b∗ correctly | c∗ is the encryption of m0]

− Pr[A guessed b∗ correctly | c∗ is the encryption of a random string] |

=| Pr[T(b )
2 − Pr[T(c)

2 | .

The general case. The second special case demonstrated how to purge the
adversary view from the information on kv∗ (which could be leaked by the label
ypv∗ in Pub associated with the single edge (p, v∗) going into v∗). In the general
case, there could be several edges going into v∗, and in particular it is necessary
to consider each path going from one of the roots of G into v∗.

To this aim, we start the sequence of games with games Game G0 and
Game G1, defined as in the first special case; then for each of the ancestor
of v∗ (considered in turn according to any topological sorting), we introduce
three games mimicking the structure of games G

(a)
2 , G

(b )
2 , and G

(c)
2 as defined in

the second special case.
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At a high level, this can be thought of as a pebbling argument, by which we
successively pebble all the ancestors of v∗, until we reach v∗ itself, according to
the following rules:

(1) A node can be pebbled only after all its ancestors have already been
pebbled.

(2) To pebble a node u, we introduce the games G(a)
u , G(b )

u and G(c)
u in the

sequence, following the same approach employed in the second special case.
In particular, first we define a game G(a)

u in which the secret information tu
is computed as:

tu← R(a)
u (0||ℓu), ku← R(a)

u (1||ℓu),

where R(a)
u : {0, 1}∗→ {0, 1}∗ is a truly random function.

Second, we define a game G(b )
u in which, for every child s of u, we compute

rus← R(b )
u (ℓs),

where R(b )
u : {0, 1}∗ → {0, 1}∗ is a truly random function.

Third, for each successor s∗ of u in the (possibly multiple) path(s) from u to
v∗, we define a game G(c)

u in which we set

yus∗ ← Encrus∗ ($||$),

where $ denotes a random value.

Reasoning along the lines of the argument for the second special case, we
can argue that each tuple of games G(a)

u , G(b )
u and G(c)

u negligibly alter the ad-
versary view (by a term 2ǫPRF + ǫEnc). Overall, once all the ancestors of v∗ have
been pebbled, we can argue that no info about kv∗ is present in Pub, and hence
kv∗ is independent from the adversary view, and it is thus indistinguishable
from k̄v∗ . From this we can derive that in the last game G(c)

v∗ ,

Pr[T(c)
v∗ ] = 1/2. (10)

Combining all the intermediate equations, we can conclude that

Pr[T0] ≤ 1/2 + ǫPRF + 2nv∗ǫPRF + ev∗ǫSEM),

where nv∗ and ev∗ are respectively the number of nodes and the number of
edges in the subgroup G′ induced by restricting G to the ancestors of v∗. This
concludes the proof.

6. SUPPORTING CHANGES TO THE ACCESS HIERARCHY

In this section we show how dynamic changes to the access hierarchy, such
as addition and deletion of edges and nodes, as well as replacing a node’s
key, are handled in the scheme of Section 5. Compared to the base scheme,
the extended scheme of Section 5 has more appealing properties in supporting
dynamic changes to an existing hierarchy, and, in particular, at handling the
so-called ex-member problem after deleting an edge. The ex-member problem
can be described as follows: Suppose the edge (vi, v j) is to be deleted from G.
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Then we will need to change the access keys for the node v j and all of it descen-
dants in the hierarchy to ensure that vi and its ancestors can no longer have
access to these nodes. In the base scheme, this will amount to changing the se-
cret information Sh = kh for each vh ∈ Desc(v j) and redistributing the new keys
to the users at these nodes. Our extended scheme, however, allows for such
updates without having to change the secret information users possess. Notice
that in the extended scheme each access key ki is computed as a function of
the secret information Si and the public label ℓi. Therefore, by changing the
label ℓi, we effectively modify the key ki. This approach will work with other
schemes where the access key ki is computed a function of Si and ℓi, but not
with our base scheme.

Insertion of an edge. Suppose the edge (vi, v j) is to be inserted into G. First,
compute rij

.
= Fti(ℓ j) and yij = Encrij

(tj||k j). Then, augment Pub to contain the
mapping (vi, v j) 7→ yij.

Deletion of an edge. In deleting an edge, the difficulty is in preventing access
by ex-members. Suppose the edge (vi, v j) is to be deleted from G. Then the
following updates take place: for each node vh ∈ Desc(v j, G), perform:

(1) Change the label of vh, call it ℓ′h. Note that Sh remains unchanged, but the
keys th and kh need to be recomputed as t′h

.
= FSh

(0||ℓ′h) and k′h
.
= FSh

(1||ℓ′h).

(2) For each edge (vp, vh) where vp ∈ Pred(vh), update the value of yph to be
an encryption of the newly compute keys, i.e., y′ph

.
= Encr′ph

(t′h||k′h), where

r′ph

.
= Ftp

(ℓ′h).

Insertion of a new node. If a new node vi is inserted, together with new
edges into and out of it, then we do the following:

(1) Create the node vi without any incoming or outgoing edges; this requires
just generating a random public label ℓi ∈ {0, 1}ρ and a random secret value
Si ∈ {0, 1}ρ , computing ki

.
= FSi

(1||ℓi) and augmenting Pub with the mapping
vi 7→ ℓi and Sec with the mapping vi 7→ (Si, ki).

(2) Add the edges one by one, using each time the above procedure for edge-
insertions.

Deletion of a node. Deletion of a node amounts to the following two steps:

(1) Deletion of all the edges coming into and out of vi, using the above proce-
dure for edge-deletions.

(2) Removal of the public and secret information associated with vi from the
maps Pub and Sec.

Key replacement. Key replacement for a node vi is performed as follows:

(1) Update the secret information Si with a new random value S
′

i

r← {0, 1}ρ .

(2) Update the vertex’s keys to t′i
.
= FS

′
i
(0||ℓi) and k′i

.
= FS

′
i
(1||ℓi).

(3) Update Sec to map vi 7→ (S
′

i , k′i).
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(4) For each edge (v j, vi) (i.e., where v j ∈ Pred(vi)), compute y′ji according to the
new keys t′i and k′i and updates Pub to map (v j, vi) 7→ y′ji.

(5) For each edges (vi, vl) (i.e., where vl ∈ Succ(vi)), compute y′il according to the
new key t′i and update Pub to map (vi, vl) 7→ y′il.

No node other than vi is affected.

User revocation. To the best of our knowledge, no prior work on hierarchical
access control considered key management at the level of access classes and
at the same time at the level of individual users. For instance, among the
schemes closest to ours, Zhong [2002] considers only a hierarchy of security
classes without mentioning individual users, and Lin [2001] considers a hier-
archy of users without grouping them into classes. However, it is important to
group users with the same privileges together and on the other hand permit
revocation of individual users. In our scheme, revoking a single user can be
done with two approaches:

(1) Recard every user at that user’s access class(es), and for all descendants
of this access class(es) perform the operation described for edge deletion
(i.e., change all keys by changing the labels and then update the public
information). Note that the descendants do not have to be rekeyed.

(2) Make the access graph such that each user is represented by a single node
in the graph with edges from this node to each of that user’s access classes.
By creating such a graph, removing a user is as easy as removing his node,
and thus does not require re-keying.

7. OTHER ACCESS MODELS

Traditionally, the standard notion of permission inheritance in access control
is that permissions are transferred up the access graph G. In other words, any
vertex in Anc(vi, G) has a superset of the permissions held by vi. Crampton
[2003] suggested other access models, including:

(1) Permissions that are transferred down the access graph. For these per-
missions, any node in Desc(vi, G) has a superset of the permissions held
by vi.

(2) Permissions that are transferred either up or down the graph but only to a
limited depth.

In this section, we discuss how to extend our scheme to allow such permissions.
We can achieve upward and downward inheritance with only two keys per
node. Also, we can achieve all of these permissions with four keys at each node
for a special class of access graphs that are layered DAGs (defined later) when
there is no collusion.

7.1 Downward Inheritance

To support such inheritance, we construct the reverse of the graph G =
(V, E, O), which is a graph GR = (V, E′, O) where for each edge (vi, v j) ∈ E

there is an edge (v j, vi) ∈ E′. Then we use our base scheme for both G and
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GR, which results in each node having two keys, but the scheme now supports
permissions that are inherited upwards or downwards.

7.2 Limited Depth Permission Inheritance

We say that an access graph is layered if the nodes can be partitioned into sets,
denoted by S1, S2, . . . , Sr, where for all edges (vi, v j) in the access graph it holds
that if vi ∈ Sm then v j ∈ Sm+1. We claim that many interesting access graphs
are already layered, but in general any DAG can be made layered by adding
enough virtual nodes.

Given such a layering, we can then support limited depth permissions. This
is done by creating another graph which is a linear list that has a node for each
layer, and there is an edge from each layer to the next layer. The reverse of this
graph is also constructed, and these graphs are assigned keys according to our
scheme. A node is given the keys corresponding to its layer in both graphs.
Clearly, with such a technique we can support permission requirements that
permit access to all nodes higher than some level and to all nodes lower than
some level.

We now show how to utilize these four key assignments to support permis-
sion sets of the form “all ancestors of some node vi that are lower than a spe-
cific layer L” (an analogous technique can be used for permission sets of the
form “all descendants of vi above some specific layer”). Suppose the key for
the permission requirement to access “all ancestors of node vi” is ki and the
key for permission requirement to access “all nodes lower than layer L” is kL .
Then we establish a key for both permission requirements by setting the key
to F(ki, kL). Clearly, only nodes that are an ancestor of vi can generate ki and
only nodes lower than level L can generate kL , so the only nodes that could
generate both keys would be an ancestor of ki and below level L, assuming
that there is no collusion.

8. IMPROVING EFFICIENCY

As the scheme described in the previous sections supports any access graphs,
it is possible to add edges to an access structure in order to reduce the path
length between two nodes. In this section we consider how to add extra, so-
called shortcut, edges to access graphs so that the distance between any two
nodes is small. This is essential for deep hierarchies since the key derivation
time in our scheme is the depth of the access graph in the worst case. We
start with techniques for one-dimensional graphs (i.e., total orders) and trees
and then describe an additional technique to extend the technique to graphs of
higher dimensions. Before proceeding with the description of adding shortcut
edges, we define the notion of dimension of an access hierarchy.

8.1 Dimension of an Access Hierarchy

An n-vertex access hierarchy G is a partial order, and it is well known that any
partial order can be represented as the intersection of t total orders, with the
smallest t for which this is possible being the dimension of the partial order

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 18, Pub. date: January 2009.



Dynamic and Efficient Key Management for Access Hierarchies · 18: 27

(see, for example, Dushnik and Miller [1941] and Trotter [1992]). That is, it is
possible to associate with every vertex v of G a t-tuple (xv,1, . . . , xv,t) such that:

(1) Every xv, j is an integer between 1 and n.

(2) If v 6= w, then xv, j 6= xw, j, for every 1 ≤ j≤ t.

(3) Node v is ancestor of node w in G if and only if xv, j > xw, j for every 1 ≤ j≤ t.

We denote the dimension of G by d(G), or by d when G is understood.
While computing the dimension of an arbitrary partial order is NP-complete
[Yannakakis 1982], and even approximating it to within a constant factor is
not known to be in P, the dimension of many access hierarchies is small. For
instance, the dimension of a tree is 2. Also, it was shown in Schnyder [1989]
that a G whose transitive reduction is planar has dimension at most three (and
the three-tuples representing it are computable in linear time). If the transi-
tive reduction of G is 4-colorable, then its dimension is at most four [Schnyder
1989]. Many access hierarchies are four-colorable, especially those for organi-
zational hierarchies.

There are, however, some hierarchies with higher dimension. For exam-
ple, in the Bell-LaPadula model with k categories (denoted by s1, . . . , sk) and
ℓ classifications (denoted by c1, . . . , cℓ), the dimension of the lattice is k + 1.
Fortunately, computing the tuple representation for this model is straightfor-
ward: The access level ci with categories in the set S is converted into a tuple
(i, x1, . . . , xk) where xi = 1 if and only if si ∈ S, and is 0 otherwise. It is not
difficult to verify that this conversion correctly implements the access control
policy.

We may actually not need to compute the dimension, but rather any d′-tuple
representation of the graph with a small enough d′. Moreover, some access
graphs can naturally be specified in such a tuple representation, when, for in-
stance, the ancestor relationship is the conjunction of a number of total-order
conditions such as “v has higher security clearance than w,” “v is a higher-
priority asset than w,” “v is more vulnerable than w,” “v is a higher-paying
class of subscribers than w,” etc. In summary, the techniques of this article
generalize the shortcut technique to any access hierarchy where a tuple-based
representation (of reasonable dimension) can be found. This significantly ex-
tends the results of the previous work that supported only trees.

8.2 The One-Dimensional Case

Shortcut schemes have been considered in prior literature [Yao 1982; Chazelle
1987; Alon and Schieber 1987; Thorup 1992; Bodlaender et al. 1994; Thorup
1995, 1997], and the known bounds (explored in a different domain) for an
n-node graph are presented in Table II. These bounds hold for both trees and
one-dimensional graphs (chains).

In the remainder of this subsection we present techniques for the one-
dimensional case as they apply to the key management domain (in case of
trees, a similar approach based on the the notion of a centroid (a node removal
of which leaves no connected components of size greater than n/2 for an n-node
tree) and centroid decomposition can be used). In what follows, let the nodes
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Table II. The Minimum Number of Shortcut Edges
Necessary for an n-Node Chain or Tree to Achieve

Diameter h

Diameter h Minimum number of shortcut edges

1 2(n2)

2 2(n log n)

3 2(n log log n)

4 2(n log∗ n)

5 2(n log∗ n)

6 2(n log∗∗ n)

7 2(n log∗∗ n)

. . . . . .

log∗ n 2(n)

(i.e., access classes) form a one-dimensional graph (i.e., a total order) and be
numbered v1 through vn. Furthermore, the access rights of node vi are a su-
perset of the access rights of node v j if and only if i ≤ j. We sometimes refer to
nodes with lower indices as nodes “on the left” and to nodes with higher indices
as nodes “on the right.”

Our goal is to compute a small set of shortcut edges such that the distance
between any two nodes is minimized preserving the original relationship be-
tween the nodes. Given a set of edges E in a graph, we denote the minimum
path length between two nodes vi and v j by dist(vi, v j); this distance is infinity
if i > j. Then for our graph, the distance between any pair of nodes is bounded
by maxvi,v j∈V,i< j dist(vi, v j). We say that a shortcut scheme is an h-hop solution if
no two nodes’ distance is more than h, that is, maxvi,v j∈V,i< j dist(vi, v j) ≤ h. Our
goal is to determine a small set of edges that results in an h-hop solution.

The transitive closure of the directed acyclic graph results in a one-hop so-
lution with O(n2) edges, and it can easily be shown that this solution is an
optimal (in terms of number of edges) one-hop solution. Thus in the remainder
of this section we concentrate on solutions with more than a single hop which
use much less space.

8.2.1 Two-hop solutions. Here we present a shortcut scheme where the
distance between any two nodes is at most two edges. This solution requires
addition of O(n log n) edges to the original graph. This bound can be proven to
be optimal for any two-hop solution.

AddShortcuts2(G):

(1) Let n denote the number of nodes in G. If n ≤ 3, then add edges between
consecutive nodes and quit. Otherwise, proceed with the next step.

(2) Find the median node, that is, the node that is dominated by about half of
the nodes and that dominates the other half; we denote this median by m.
Place the nodes that dominate m in a set L; and place the nodes dominated
by m in a set R.

(3) For each node vi ∈ L, create a shortcut edge (vi, m).

(4) For each node vi ∈ R, create a shortcut edge (m, vi).
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Fig. 3. Addition of shortcut edges for the two-hop one-dimensional solution.

(5) Create a graph GL from the nodes in L and execute AddShortcuts2(GL).

(6) Similarly for R, create a graph GR and execute AddShortcuts2(GR).

Figure 3 depicts the first level of recursion for the above procedure.
It can be easily shown that, in the above-defined structure, the nodes in the

graph are at most two hops from each other. That is, suppose nodes x and y

are separated by some median m during the above protocol. Then clearly there
is a path of length two from x to y (specifically, x to m to y). On the other hand,
suppose that x and y are never separated by a median, then from the base case
(Step 1) the nodes will have a path of length at most two.

The space required by the solution follows the recurrence f (n) = O(1) for
n ≤ 3, and f (n) = O(n) + 2 f (n/2) otherwise. It is straightforward to show that
f (n) = O(n log n).

Creation of a data structure with two-hop paths implies that we also need
a constant-time algorithm for finding it. That is, we need a FindPath2(x, y, G)
procedure that, given two nodes x and y, finds a path consisting of two edges
from point x to point y. To achieve this, we store the recursion tree (call it RT)
for the above AddShortcuts2 algorithm, which takes no more space than storing
the shortcut edges. The two-hop path we seek would be easy to find if we could,
in constant time, compute the lowest node (call it u) of RT for which x and y

are a part of that node’s sub-problem: the shortcut edges (x, m) and (m, y) are
available at the node u in RT, where m is the median of node u’s subproblem.
Fortunately, computing u is easy to do in constant time, by making use of Harel
and Tarjan [1984] that showed that in any tree it is possible to answer nearest

common ancestor (NCA) queries in constant time. In more detail, given any
two nodes of RT, their common ancestor in RT that is nearest to them can be
computed in constant time (in fact, doing so is rather straightforward in our
case where RT is a complete binary tree). In our case, the two nodes whose
NCA we seek are the leaves of RT that contain x and y, and their NCA is the
node u that contains the two shortcut edges that we want.

8.2.2 Three-hop solutions. In this section, we describe a shortcut scheme
where nodes are separated by at most three hops. Atallah et al. [2005] gave a
scheme for trees that introduces O(n log log n) edges. While trees have dimen-
sion d = 2, we cannot use these techniques for the case of d = 2, because not
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all graphs of dimension two are trees. Thus, we adopt that solution to the one-
dimensional case and, for completeness, briefly describe the scheme next. We
would like to note that this bound is asymptotically optimal for any three-hop
solution.

For ease of presentation, the procedure below is given for the case n = 22q

.
This allows us to avoid using floor/ceiling functions, but does not narrow the
applicability of the solution.

AddShortcuts3(G):

(1) Let n denote the number of nodes in G. If n ≤ 4, then add edges between
the consecutive nodes. Otherwise, proceed with the next step.

(2) Create a set of special nodes S that consists of every
√

nth node in the
graph. That is, initialize Swith {vn} and then add nodes vn− j

√
n for all j such

that j
√

n < n (note that j <
√

n). Let us refer to this set as S = {vi1 , . . . , vim},
where i1 < i2 < · · · < im.

(3) Insert new edges between the nodes in S to form the transitive closure of
the set (i.e., now the nodes in S are one hop away from each other).

(4) For each node vi 6∈ S, if a node v j ∈ S exists such that j < i and i < j +
√

n,
insert an edge (v j, vi) if it is not already present.

(5) For each node vi 6∈ S, find v j ∈ S such that i < j and j < i +
√

n, insert an
edge (vi, v j) if it is not already present.

(6) Form a subgraph G j from the nodes between vij
and vij+1

and the edges
that preserve their ordering. Also, construct a subgraph G0 from the nodes
before vi1 and the edges connecting them. Execute AddShortcuts3 on graphs
G0, . . . , Gm−1 to recursively add shortcut edges to them.

Figure 4 depicts different stages of the above algorithm for the first level of
recursion. The top figure gives the original hierarchy, the middle figure shows
the hierarchy after selection of special nodes and constructing their transi-
tive closure, and the bottom figures shows the hierarchy after adding shortcut
edges to and from the special nodes.

To demonstrate that in the above data structure the nodes are at most three
hops from each other, we consider all cases. Clearly, in the base case (Step 1),
nodes are at most three hops from each other. Also, if nodes x and y (where x

is left of y) are separated by a special node, then x can reach its nearest special
node, x′, in at most one hop (from Step 5), x′ can reach the special node, y′, that
is rightmost special node before y in at most on hop (from Step 3), and y′ can
reach y in at most one hop (from Step 4). Finally, the case where x and y are
not separated by a special node is solved by the recursive step.

The space required by the solution easily follows the recurrence f (n) = O(1)
for n ≤ 4, and f (n) = O(n) +

√
n f (
√

n) otherwise. It is straightforward to show
using induction that f (n) = O(n log log n).

Similar to the case of two-hop solution, the existence of a three-hop
path is not enough: we also need a constant-time algorithm for finding
it. The FindPath3(x, y, G) procedure for doing this is very similar to the
FindPath2(x, y, G) that we gave for the two-hop case. In more detail, we find
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Fig. 4. Addition of shortcut edges for the three-hop one-dimensional solution.

the NCA (call it u) of the two leaves of RT that contain x and y, and the
nodes x′ and y′, such that edges (x, x′), (x′, y′), (y′, y) are in G and are avail-
able at u (from the shortcut edges added in each of the steps 3 to 5 of the above
AddShortcuts3(G) procedure).

8.2.3 Four or more hop solutions. The three-hop solution presented in the
previous section gives us a template for designing schemes with three or more
hops. Suppose that an h-hop solution (h > 2) is desired, then we can use the
following algorithm for adding shortcuts to G:

AddShortcutsh(G):

(1) Let n denote the number of nodes in G. If n≤ h+1, then add edges between
the consecutive nodes. Otherwise, proceed with the next step.

(2) Partition the nodes into n/m cells of size m each. Declare the last node in
every cell to be a special node, and add all of the special nodes to a set S.

(3) Use the scheme that provides an (h− 2)-hop solution to connect the nodes
in S. That is, execute AddShortcutsh−2(GS), where GS consists of the nodes
of S and the edges that define the relationship between such nodes.

(4) For each nonspecial node v 6∈ S, add an edge from it to its nearest special
node after v.

(5) For each nonspecial node v 6∈ S, add an edge from the nearest special node
before v (if one exists) to it.

(6) Recursively add shortcut edges to each cell (ignoring the special nodes) by
executing this algorithm on each of them.
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Table III. Performance of Shortcut Schemes for One-Dimensional Graphs

Private Key Public
Scheme

Storage Derivation Storage

2HS 1 2 op. O(n log n)

3HS 1 3 op. O(n log log n)

4HS 1 4 op. O(n log∗ n)

log∗HS 1 O(log∗n) op. O(n)

The number of edges in the above algorithm follows the recurrence f (n, h) =
O(n) + f (n/m, h − 2) + (n/m) f (m, h). For h = 4 and m = log n, this leads to
f (n, 4) ≤ O(n) + (n/ log n) f (log n, 4) (recall that f (n, 2) = O(n log n)). Now it is
straightforward to show that f (n, 4) = O(nlog∗n).

The constant-time procedure for computing the four-hop path between any
two nodes is very similar to the one given for the two-hop case: The whole
recursion tree RT is stored, and a constant-time NCA computation is used
to get to the node of RT at which the nodes x′ and y′ of the four-hop path
x, x′, m′, y′, y can simply be read. The node m is retrieved from the recursion
tree of GS using NCA computation. For any general h, FindPathh(x, y, G) will
have O(h) complexity.

8.2.4 O(log∗ n)-hop solutions. We briefly point out here that any O(1)-hop
scheme of edge complexity O(nlog∗n) (such as the scheme given in the previous
section) can be used to build an O(log∗n)-hop scheme of O(n) edge complexity,
as follows. Let S consist of every ( jlog∗n)th node of the input total order, 1 ≤
j ≤ m = n/log∗n. This S induces a partition of the n-node chain into (at most)
m + 1 chunks C1, C2, . . . , Cm+1 of size ≤ log∗n each. We build a linear chain of
size m on S and use the constant-hop solution on that chain. This allows us
to achieve the distance of 4 edges between nodes of S at an edge complexity of
O(mlog∗m), which is O(n). The key derivation between two nodes in the same
chunk is done in ≤ log∗ n hops by marching along the edges within that chunk.
A derivation from a node x in chunk Ci to a node y in chunk C j, i < j, is done by
first (1) marching within Ci from v to the vertex x′ ∈ S that is at the boundary
between Ci and Ci + 1; then (2) using a four-hop derivation within S to go from
x′ to the vertex y′ ∈ S that is at the boundary between C j−1 and C j; and finally
(3) marching within C j from y′ to y. The total number of hops in that case is
therefore ≤ 2log∗n + 4.

8.2.5 Summary of one-dimensional solutions. Table III shows a summary
of one-dimensional schemes described here. In the table, we denote by sHS
a solution where the distance between any two nodes is at most s, that is, a
so-called s-Hop Scheme.

To make the numbers more concrete, we performed simulation experiments
to determine the minimum number of shortcut edges that are required to re-
duce the distance between nodes in an n-node one-dimensional graph to no
more than h hops. In such experiments, we used the transitive closure and
the scheme of Section 8.2.1 to achieve one-hop and two-hop graphs, respec-
tively. For the simulations of schemes with more than two hops, we used the
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Table IV. Number of Edges for h-Hop Solutions

No. of Number of Hops
Nodes 1 2 3 4 5 6 7 8 9 10

10 45 19 17 15 14 13 13 13 9 9
25 300 74 61 49 46 43 43 42 40 40
50 1225 193 146 119 110 98 95 92 92 91
100 4950 480 342 264 245 218 209 197 194 191
250 31125 1503 997 724 685 587 562 527 512 498
500 124750 3498 2173 1538 1427 1223 1184 1086 1061 1026
750 280875 5737 3408 2375 2186 1870 1804 1651 1620 1553
1000 499500 7987 4666 3241 2941 2537 2426 2222 2183 2085
2500 3123750 23417 12912 8652 7542 6618 6198 5704 5556 5298
5000 12497500 51822 27379 18144 15334 13651 12541 11617 11197 10703
10000 49995000 113631 57978 37950 31192 28143 25333 23650 22540 21616

generic scheme of Section 8.2.3. In the case of the generic scheme, to choose
the number of groups to use, we performed an exhaustive search to find the
number that minimized the number of edges. Table IV shows the number of
edges from our simulation results for schemes with 1 to 10 hops.

8.3 Higher Dimensions

The idea behind building a solution for higher dimension is the addition of
new dummy vertices that make it possible to add a small number of shortcuts
to achieve the desired fast-key-derivation performance. Note that the dummy
vertices and their associated keys are internal to the system (used purely for
performance reasons) and that no access classes correspond to them. Unlike
the solution given above, where shortcut edges were in addition to the original
edges of the hierarchy, here the only explicit edges that remain are the shortcut
edges (some of them may of course coincidentally correspond to edges in the
original graph, but this is not required). The addition of dummy vertices and
shortcut edges is a novel technique in this area, and we believe it has much
promise beyond enabling the specific performance bounds that we achieve in
this work.

We give a solution that achieves key derivation in no more than (and typi-
cally less than) 2(d−1)+h1(n) steps (each of which corresponds to following one
shortcut edge), where h1(n) denotes the number of hops between any two nodes
in the underlying one-dimensional scheme (i.e., any of the above) for a graph
with n nodes. The public space used in this scheme is O( f1(n)(log n)d−1), where
f1(n) denotes the space complexity (i.e., the number of edges) of the underlying
one-dimensional scheme.

Rather than immediately giving the solution for arbitrary d, for expository
reasons we choose to first present the solution for d = 2, because the two-
dimensional case is easier to grasp intuitively than the higher-dimensional
one. Once the basic idea has been presented (with good intuition) for d = 2, we
give the general construction for arbitrary d.

8.3.1 The case d = 2. The fact that the graph G has dimension 2 implies
that every vertex v can be replaced by a pair of numbers (x(v), y(v)), such that
w is an ancestor of v in G if and only if w dominates v, that is, x(w) ≥ x(v) and
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y(w) ≥ y(v). From now on, for convenience, we refer to “points” rather than
“vertices.” A shortcut is then an ordered pair of points w, v describing an extra
“key-derivation edge” that will be added from point w to point v.

The input is a set V of n points in two-dimensional space, and the desired
output includes a set S of shortcuts between pairs of points (some of which
may not belong to V) such that (1) |S| = O( f1(n) log n), and (2) given any pair
of points v,w ∈ V such that w dominates v, there is a path of at most h1(n) + 2
shortcut edges from w to v. The output also includes the set P that contains
V as well as the additional dummy points (i.e., points not in V but that are
touched by edges in S).

The solution steps are as follows.

(1) Initialize P = V, and initialize S to be empty.

(2) If |V| = 1, then return P and S; otherwise continue with the next steps.

(3) If |V| > 1, then compute a median line M that is perpendicular to the y

axis and partitions V into two equal sets V1 and V2, where V1 (V2) is left
(resp., right) of M. Let V ′1 (V ′2) be the projection of V1 (resp., V2) on line M.

(4) Add to S the following shortcut edges:
–a shortcut edge from every point of V ′1 to its corresponding point of V1;
–a shortcut edge from every point of V2 to its corresponding point of V ′2.

(5) Recursively build the shortcut edges and dummy points for the set V1. Let
that recursive call return P1 as the set of points (including dummies) and
S1 as the set of shortcut edges within P1. Update S and P as follows:
S = S∪ S1 and P = P ∪ P1.

(6) Recursively build the shortcut edges and dummy points for the set V2. Let
that recursive call return P2 as the set of points (including dummies) and
S2 as the set of shortcut edges within P2. Update S and P as follows:
S = S∪ S2, and P = P ∪ P2.

(7) Solve the one-dimensional problem consisting of V ′1 ∪ V ′2 using one of the
schemes of Section 8.2. Let this return a set of edges S3 (note that it returns
only a set of edges, i.e., it does not add any dummy points). Update (i.e.,
augment) S as follows: S = S∪ S3. (P stays the same.)

The space complexity (i.e., the number of shortcut edges and dummy points)
of the above-described scheme obeys a recurrence of the form f (n) ≤ 2 f (n/2) +
cf1(n) for some constant c if n > 1; and f (n) = O(1) if n = 1. The resulting
solution is O( f1(n) log n). Note that this recurrence follows from step 4 (which
recursively solves the problem for (n/2) points), step 5 (which recursively solves
the problem for (n/2) points), step 7 which adds f1(n) edges, and step 1 which
uses O(n) points.

That any w-to-v number of shortcut edges is at most h1(n) + 2 is proved by
induction on n (the base case being trivial): If w ∈ V2 and v ∈ V1, then the
path of length at most h1(n) + 2 consists of following one edge from w ∈ V2 to
its projection w′ ∈ V ′2, at most h1(n) edges from w′ to the point v′ ∈ V ′1 that is
the projection of v on M, and one edge from v′ to v. When both points v and w

are in V1 or both are in V2, the claim follows from the induction hypothesis.
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Fig. 5. Two dimensional access hierarchy (original).

Fig. 6. Two dimensional access hierarchy (converted to tuple form).

Example. To help clarify our shortcut technique, we give an example of the
recursive step in the previous section. Figure 5 shows a tree access hierarchy
that will be used for this example.

Figure 6 contains a set of points in two dimensions that represents a tree’s
access structure. Note that if a point dominates another point in this figure,
then the dominating point must have a path to the dominated point in the final
structure.

Figure 7 shows the shadow points (added in step 3 and denoted by open
circles) for the previous figure. Note that the shadow points are on a one
dimensional plane (i.e., a line). This figure also shows the transitions from
normal points to shadow points and vice versa (as described in step 4). Also
note that the shadow points will be linked in step 7.

8.3.2 The case d ≥ 3. The fact that the graph G has dimension d implies
that every vertex v can be replaced by a d-tuple of numbers (x1(v), . . . , xd(v)),
such that w is an ancestor of v in G if and only if w dominates v, i.e., xi(w) ≥
xi(v) for all i ∈ {1, . . . , d}.
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Fig. 7. Two dimensional hierarchy with shadow points.

The input is a set V of n d-dimensional points, and the desired output
includes a set S of shortcuts between pairs of points (some of which may not
belong to V) such that (1) |S| = O( f1(n)(log n)d−1), and (2) given any pair of
points v,w ∈ V such that w dominates v, there is a path of O(d+h1(n)) shortcut
edges from w to v. The output also includes the set P that contains V as well as
the additional dummy points (i.e., points not in V but that are touched by edges
in S).

As we did for the two-dimensional case, the construction we use is recursive.
Specifically, we inductively assume that the d− 1 dimensional problem can be
solved with O( f1(n)(log n)d−2) edges and with a key derivation path of 2(d−1)+
h1(n) (note that this holds for d = 1 and for d = 2 by the previous subsections).

The solution steps are as follows:

(1) Initialize P = V, and initialize S to be empty.

(2) If |V| = 1, then return P and S, otherwise continue with the next steps.

(3) If d = 1, then solve using one of the one-dimensional schemes of the previ-
ous section, otherwise continue with the next steps.

(4) If |V| > 1, then compute a d− 1 dimensional hyperplane M, perpendic-
ular to the dth dimension, that partitions V into two equal sets V1 and
V2, where V1 is the set of points that are on the smaller side of the hyper-
plane (according to their dth coordinate). Let V ′1 be the projection along
dimension d of V1 on hyperplane M. Let V ′2 be the projection of V2, along
dimension d, on hyperplane M.

(5) Add to S the following shortcut edges:
–a shortcut edge from every point of V ′1 to its corresponding point of V1;
–a shortcut edge from every point of V2 to its corresponding point of V ′2.

(6) Recursively build the shortcut edges and dummy points for the set V1. Let
that recursive call return P1 as the set of points (including dummies) and

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 18, Pub. date: January 2009.



Dynamic and Efficient Key Management for Access Hierarchies · 18: 37

S1 as the set of shortcut edges within P1. Update S and P as follows:
S = S∪ S1 and P = P ∪ P1.

(7) Recursively build the shortcut edges and dummy points for the set V2. Let
that recursive call return P2 as the set of points (including dummies) and
S2 as the set of shortcut edges within P2. Update S and P as follows:
S = S∪ S2 and P = P ∪ P2.

(8) Solve the d−1 dimensional problem consisting of V ′1∪V ′2, using the solution
for dimension d− 1, and update P and S according to what this solution
returns: If it returns S3 and P3, then the updates are S = S ∪ S3 and
P = P ∪ P3.

The space complexity (i.e., the number of shortcut edges and dummy points)
obeys the following recurrence. If n > 1, then:

f (n, 2) ≤ c1 f1(n) log n

and, if d > 2, then

f (n, d) ≤ 2 f (n/2, d) + f (n, d− 1) + c2dn

Note that this recurrence follows from steps 5 and 6 (which each recursively
solve the problem for n/2 points in d dimensions), step 7 (which recursively
solves a problem for n points in d− 1 dimension), and the other steps add at
most O(n) points and edges.

Now, if n = 1, then f (1, d) = c3d. Thus, the solution to the above recurrence
is

f (n, d) = O(df1(n)(log n)d−1).

The w-to-v number of shortcut edges obeys the following recurrence. If n > 1,
then:

h(n, 2) ≤ h1(n) + 2

and, if d > 2, then

h(n, d) ≤ 2 + h(n, d− 1).

Note that the above recurrence follows from the following number of edges:
one hop from V2 to a shadow point, h(n, d− 1) hops on the d− 1 dimensional
hyperplane in step 7, and one hop from the shadow point to the destination
point.

Now, if n = 1 then h(1, d) = 1. Thus, the solution to the above recurrence is

h(n, d) ≤ 2(d− 1) + h1(n).

Table V summarizes the performance of our solution, when instantiated with
different one-dimensional schemes. In the table, h1(n) and hd(n) denote the
maximum distance between two nodes for one-dimensional and d-dimensional
n-node graphs, respectively; and f1(n) and fd(n) denote the space complex-
ity (i.e., the number of edges) for one-dimensional and d-dimensional graphs,
respectively.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 18, Pub. date: January 2009.



18: 38 · M. J. Atallah et al.

Table V. Performance of our Solution with Different One-Dimensional Schemes

One Dimensional Scheme d-Dimensional Scheme

h1(n) f1(n) hd(n) fd(n)

1 edge O(n2) 2d− 1 O(n2(log n)d−1)

2 edges O(n log n) 2d O(n(log n)d)

3 edges O(n log log n) 2d + 1 O(n(log n)d−1 log log n)

4 edges O(n log∗ n) 2d + 2 O(n(log n)d−1 log∗ n)

O(log∗ n) edges O(n) 2(d− 1) + O(log∗ n) O(n(log n)d−1)

8.3.3 Using the data structure. We also need a corresponding FindPath
(x, y, G) procedure that, given two points x and y in V, finds a shortest path of
shortcut edges from point x to point y. This subsection gives such a procedure
(it is a simple generalization of the path-finding procedures we gave earlier for
the one-dimensional case).

As before, we use RT to denote the recursion tree corresponding to the
recursive calls of the procedure that adds shortcuts (given in the previous
subsection); that is, in RT, the root corresponds to V, and the root’s children
correspond to the respective sets V1 and V2 that are separated by the hyper-
plane M. We henceforth use Vu to denote the set of points that correspond to
a node u of RT, and V ′u to denote the projection of Vu on the hyperplane Mu

that was used in the recursive call for u (of course |V ′u| = |Vu|, but V ′u has one
dimension less than Vu). The height of RT is h = log n and its leaves corre-
spond to sets of size 1 (as they correspond to the bottom of the recursion). We
shall augment every node u in RT with an array 5u that, for every point x of
Vu, gives its projection 5u(x) on the hyperplane Mu that was used in the re-
cursive call for u; we use V ′u to denote the projection of V on Mu. This takes
space similar to the number of shortcut edges that were added at that partic-
ular node of RT, and provides a constant-time mechanism for following each
such edge.

Note that a point x ∈ V occurs in h sets like Vu, once at each depth i in RT,
1 ≤ i ≤ h (the root being at a depth of 1). In what follows, for every point x ∈ V

and 1 ≤ i ≤ h, we use N(x, i) to denote the node u of RT at depth i and whose
Vu contains p. Note that N(x, 1) is the root of RT, and that N(x, h) is the leaf
of RT that contains x.

The overall space complexity of RT is the same as the space complexity of
the data structure created in the previous subsection (as the size of the array
5u is equal to the number of shortcut edges that were added at node u of RT).
We now turn our attention to how RT is used to trace a path of shortcut edges
between two points.

As we did for the one-dimensional case, we shall make use of the fact that in
a tree it is easy to answer nearest common ancestor (NCA) queries in constant
time: given any two nodes of RT, their common ancestor in RT that is nearest
to them, can be computed in constant time.

The following procedure takes as inputs two d-dimensional points x, y ∈ V

and, if x dominates y, returns a shortest path from x to y. In what follows, G′u
denotes the graph formed from the nodes of V ′u (preserving the partial order
relationship between the nodes).
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FindPath(x, y, G):

(1) Check in constant time whether x dominates y: If not then output “no path
exists” and stop, otherwise continue with the next steps.

(2) If the dimension of (x, y, G) is 1, then use a one-dimensional path-finding
procedure. Otherwise continue with the next steps.

(3) Let v = N(x, h) and w = N(y, h), that is, v (resp., w) is the leaf of RT whose
corresponding set contains x (resp., y).

(4) Compute in constant time the nearest common ancestor (NCA) in RT of v

and w, call it u. Note that p and q are both in Vu, and they are on different
sides of the hyperplane Mu. Let p′ = 5u(x), q′ = 5u(y). The first edge on the
path we seek is (x, x′), the last edge on it is (y′, y), and the portion of it from
x′ to y′ is of dimension d− 1 and can be computed as FindPath(x′, y′, G′u).

The time taken by the above path-finding procedure is h1(n) for the base case,
and constant per dimension-reduction round, hence a total of O(d + h1(n)).

The FindPath technique we used in the above is widely applicable in other
recursive solutions to shortcut-edge-adding procedures: Its essence is that a
nearest common ancestor computation [Harel and Tarjan 1984] provides a
constant-time jump to the relevant spot in the recursion tree, after which the
problem becomes easy (we thereby avoid paying a price proportional to the
height of the recursion tree).

8.4 Extension to Dynamic Hierarchies

Dynamic changes to the hierarchy (such as addition and deletion of nodes and
edges, as well as a node’s key replacement) do not require wholesale rekey-
ing, rather, only the nodes directly affected by the change need rekeying. As
described in Section 6, by changing the label, one can change a node’s key.
However, while individual nodes do not need to be rekeyed, the public infor-
mation (dummy nodes and shortcut edges) does need recomputing after the
access graph is modified. Because of the divide and conquer recursive nature of
the algorithm, this recomputation looks amenable (at least for the case d = 2)
to the techniques of dynamization of van Leeuwen and Overmars (see, e.g.,
van Leeuwen and Overmars [1981]; and Overmars and van Leeuwen [1981a;
1981b]). This looks like a promising direction for future work.

8.5 Connection to Graph Spanners

Recall that a k-spanner of a graph G (directed or undirected) is a subgraph G′

of G such that the distance between every two vertices in G′ is at most k times
the distance between them in G [Peleg and Schaeffer 1989]. Taking G∗ to be
the transitive closure of our access graph, and k to be the number of hops we
achieve in our key-derivation, our results can be interpreted as providing the
construction of a sparse k-spanner for G∗, for the class of access graphs G that
we consider. Most existing work on graph spanners is for undirected graphs,
and the existing work on directed graphs does not provide bounds that com-
pete with ours (but it is for more general graphs than ours). It was shown
in Peleg and Schaeffer [1989] that for certain dense directed graphs any
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k-spanner requires �(n2) edges. The problem of computing the sparsest k-
spanner of a graph (directed or undirected) is known to be NP-hard, and is

�(log n) inapproximable for k = 2 and 2log1−ǫ n inapproximable for k > 2. But for
graphs with O(n1+β) edges an approximation within a factor of O(n(β+1)/3 logα)
exists, with 0 < β ≤ 1 and α = O(1) [Elkin and Peleg 2005].

9. CONCLUSIONS

In summary, we give the first solution to the problem of access control in an
arbitrary hierarchy G with the following properties:

(1) Only hash functions are used for a node to derive a descendant’s key from
its own key;

(2) The space complexity of the public information is the same as that of
storing graph G;

(3) The derivation by a node of a descendant’s access key requires O(ℓ)
operations, where ℓ is the length of the path between the nodes, which can
be significantly decreased for many types of graphs by increasing public
information.

(4) Updates are handled locally and do not propagate to descendants or ances-
tors of the affected part of G;

(5) A formal security analysis (based on standard cryptographic assumptions)
guarantees that the scheme is strongly resistant to collusions in that no
subset of nodes can conspire to gain access to the key of any node to which
they do not have legitimate access; and

(6) The private information at a node consists of a single key.

We also provided simple modifications to our scheme that allow to handle
Crampton’s extensions of the standard hierarchies to limited depth and re-
verse inheritance [Crampton 2003]. Additionally, we provided techniques for
reducing the distance between nodes for the purposes of faster key derivation.
For one-dimensional graphs and trees, lowering of key derivation time consists
of inserting extra edges to the hierarchy, and for more general graphs of dimen-
sion d it consists of adding dummy vertices that permit dimension reduction.
The fast performance achieved by our scheme is summarized in Table V.

Our work was extended in De Santis et al. [2007], and the primary
improvements to our scheme were twofold: (1) the authors introduced a prov-
ably secure key derivation that relies only on one complexity assumption
(secure symmetric encryption scheme) and (2) they introduced a new short-
cutting technique for higher dimensional partial orders, there the number of
shortcut edges is O(3d−1 · n · d · logd−1

n log log n) and the distance between any
two points is three.
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