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Abstract. In secure multiparty computation, a set of mutually mistrusting players engage in a
protocol to compute an arbitrary, publicly known polynomial-sized function of the party’s pri-
vate inputs, in a way that does not reveal (to an adversary controlling some of the players) any
knowledge about the remaining inputs, beyond what can be deduced from the obtained output(s).
Since its introduction by Yao [39], and Goldreich, Micali and Wigderson [29], this powerful
paradigm has received a lot of attention. All throughout, however, very little attention has been
given to the privacy of the players’ outputs. Yet, disclosure of (part of) the output(s) may have
serious consequences for the overall security of the applicatione.g.,when the computed output
is a secret key; or when the evaluation of the function is part of a larger computation, so that the
function’s output(s) will be used as input(s) in the next phase.
In this work, we define the notion ofprivate-output multiparty computation. This newly revised
notion encompasses (as a particular case) the classical definition and allows a set of players to
jointly compute the output of a common function in such a way that the execution of the protocol
reveals no information (to an adversary controlling some of the players) about (some part of) the
outputs(other than what follows from the description of the function itself). Next, we formally
verify that basically no function can be output-privately computed in the presence of an adversary
who gets full access to the internal memory of the corrupted players. However, if one restricts the
(computationally bounded) adversary to control only part of thestateof corrupted players, any
function can be output-privately computed, assuming that enhanced trapdoor permutations exist
and that public communication channels are available. Moreover, we prove security is preserved
under sequential composition.
We note thatpartial access to the internal state of some of the players (either part of the timee.g.,
forward-security and intrusion-resiliency, or part of the space,e.g.,secure CPU/memory) is an
assumption that has been used in various settings to formalize limits on the attacker’s capabili-
ties that can be enforced via reasonable physical and architectural restrictions. However, previous
models were devised for specific cryptographic tasks (e.g.,encryption and signature schemes),
whereas our formalization has a wider scope. We believe that the model we suggest may fos-
ter further studies of insider adversaries with partial control in the context of secure multiparty
computation.

1 Introduction

Secure multi-party computation (MPC) [39,29] allows a set of mutually mistrusting parties to jointly
compute a function, while keeping their inputs private. The MPC paradigm allows many settings and
concerns to be modeled, and thus it is a strong tool in showing that solutions exist to very general
cryptographic problems (cf. e.g.,[29,3,14,15,10,27]). The power of the framework stems from the
fact that under corruption of some of the parties (according to various settings and constraints) it is
possible to compile any polynomial sized function into a protocol that maintains input privacy. In

? Research conducted while visitingÉcole Normale Suṕerieure, Paris.
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particular, input privacy is assured facing an adversary that is assumed to monitor the entire state
(memory) of corrupted parties (passive adversary) and one that in addition may control the corrupted
parties’ memory arbitrarily (malicious adversary).

Let us briefly recall just some of the settings considered in the literature. A basic distinction is
between thecomputationalsetting [29] where all communication between the parties is visible to the
adversary, and theinformation-theoreticone [3,14,38], where point-to-point communication links are
completely protected, but the adversary is not restricted to probabilistic polynomial time. An orthog-
onal distinction is regarding staticvs.adaptive corruption [10], whereas other directions investigate
different classes of possible adversaries [32,19,7] or extended security notions [38,11,23,37,2,8].

MOTIVATION . In all the above flavors, the definition of secure MPC guarantees that no information
on the inputs is leaked to the adversary. In other words, the privacy concern (cf. e.g.[15,1]) is about
the parties’inputs, and no assurance is directly provided about the confidentiality of theoutput(s).
Disclosure of (part of) the output(s) may indeed have serious consequences on the overall security of
the applicatione.g.,when the computed output is a secret key; or when the evaluation of the function
is part of a larger computation, so that the function’s output(s) will be used as input(s) in the next
phase; or if there is a need to reveal the output only at a certain point locally by a participant, in “real
time,” and not before.

One could think that a simple way to provide output-privacy (with respect to some adversary)
would be to compute the given function using standard multiparty computation techniques, but forcing
the players to keep the output “distributed” among them all. Then, when the output is needed, the
parties would privately exchange their “shares” (by means of encryption) and locally reconstruct the
global output. This would seemingly protect against outsider adversaries,i.e., adversaries who are
only allowed to monitor the communication among the players.

Suchad-hocsolution, however, dodges the problem, rather than solving it. In particular, how can
we prove that this is “secure” if current definitions of secure function evaluation donot model the
security concerns that we want to address? How could protocols resulting from the above approach
be composed, when the output is required to be at the same time secure and locally (rather than
distributedly) available?

On the other hand, a more structured approach would clearly be preferable, possibly addressing
issues of protocol composition, and encompassing more powerful adversaries who can exert some
form of “active” control on the protocol participants. Though this is mostly a definitional effort, we
believe that shedding light on the conditions under which privacy of the output(s) can be attained is
important to improve our understanding of a central cryptographic tool such as MPC.

Postulating a limitation on the kind of control that the adversary can obtain on corrupted parties is
akin in spirit to physical assumptions, such as the use of smart-cards and tamper-proof memory. The-
oretical modeling and formal treatment of the issue of protected and tamper-proof storage (and not
merely the more traditional protected communication lines) is a recent area of research, motivated by
the advances in hardware technology and computer architectures. Reliance on some form of tamper-
resistant hardware has been formally investigated in recent work,e.g., the use of self-destructing capa-
bilities for algorithmic tamper-proof security [26], of physical envelopes for collusion-free protocols
[34,35,36], and of secure IPSec cards in “bump-in-the-wire” configuration [31].

THE PROBLEM, A NEW MODEL AND OUR RESULTS. This paper aims to answer the following
question: Is it possible to provide a framework for multiparty computation where concerns of confi-
dentiality of the output can be properly expressed in the syntax of the functionality, and addressed in
the definition of security?A first difficulty arises from the fact that, for some functionalities, (part of)
the output of one player may coincide with that of other players. For correctness, a secure protocol
should then guarantee that this is actually the case. This implies that the corruption of one player
might reveal, to the corrupting adversary, (part of) of the output ofall players. Intuitively, this makes
the notion of output-privacy hard to capture. For the sake of concreteness, in this work we will con-
sider scenarios in which the concerns of confidentiality are focused on such common output, which

2



we explicitly mark asglobal in the description of the functionality itself (cf. Definition 1). Our ex-
tended model will then provide privacy of the global output, whereaslocal outputs(i.e., the part of
each party’s output which is not common to all players) will be protected only to the (limited) extent
guaranteed by the classical setting.

The main technical hurdle toward a satisfactory definition of private-output multiparty computation
lies in that confidentiality of the global output cannot seemingly be achieved with respect to traditional
active adversaries i.e.,adversaries with total control over the behavior of (some of the) players. This
is because, for correctness, each party should obtain the same global output at the end of a run of the
protocol: this part of the output is thus available to the adversary, as soon as a player is corrupted. Thus,
a good definition of private-output multiparty computation should be strict enough to encompass this
issue, but also sufficiently general to leave room for “interesting” adversaries to consider.

The same intuition behind this impossibility issue suggests that achieving private-output security for
the case ofoutsider(i.e. eavesdropping) adversaries may be feasible. In practice, however, security
against this kind of adversaries cannot be deemed sufficient. Consequently, an important issue to
investigate is to determine the highest attainable level of protection. To do so, the most natural thing
is to consider adversaries having limited corrupting power, and then progressively increase the level
of control that the adversary can exert over controlled parties as much as possible, without falling
into a plain impossibility. We note that settings with partial corruption (either part of the timee.g.,
forward-security [4] and key-insulation [18], or part of the space,e.g.,secure CPU/memory [26])
have been considered in many situations in the past for specific cryptographic tasks (e.g.,encryption
and signature schemes), but not for general MPC.

To formalize a proper level of “limited corrupting power,” we move from the following observation.
Whenever the adversary corrupts a player, the available information, namely its input, its random
coins, and the messages exchanged with the other parties, are already enough to derive the value of
the global output. Hence, to there be any hope of protecting such value, the power of the adversary
must be reduced by postulating that it cannot access (part of) these three quantities,even for the
corrupted players.

Since communication among the parties occurs over an insecure network, removing thereceived
messages from the adversary’s view seems too strong an assumption. Similarly, the party’s input is
often decided by a higher-level protocol, and so it is quite likely to be known to the adversary.

Thus, the most natural way to restrict the view that the adversary can obtain by corrupting parties
is to provide her with parties’ inputs, along with all the messages exchanged with the other parties,
while limiting her access to the controlled parties’ randomness and outputs (which, in practice can be
produced by a tamper-proof device at the user’s computing environment).

Establishing how and when to limit the adversary’s access to this randomness leads to new classes
of adversaries of increasing capabilities (i.e., the more randomness the adversary is allowed to ac-
cess, the more powerful she is). Furthermore, this allows us to prove the strongest possible feasibility
result. Informally, we prove that, under the assumption that enhanced trapdoor permutations exist,
every function is output-privately computable even in the presence of an adversary with, basically, the
sole restriction that she cannot see the global output computed by the players. In light of the above
mentioned impossibility (which we formally verify), our result is optimal in the sense that it is the
strongest attainable feasibility result.

2 Preliminaries

2.1 Notation

Let ` be a security parameter. In the following we denote withN the set of natural integers and with
R+ the set of positive real numbers. We say that a functionnegl : N → R+ is negligible if for
every polynomialp(`) there exists aǹ0 ∈ N s.t. for all ` > `0, negl(`) ≤ 1/p(`). PPT stands for
Probabilistic Polynomial Time. IfA is a PPT algorithm, we writex

r← A(y) to denote thatx is
obtained by runningA on inputy. (We omit the ‘r’ whenA is deterministic.) IfS is a set, we denote
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with x
r← S the process of samplingx from S uniformly at random, and byx

D← S the process of
samplingx from S according to a given (efficiently samplable) distributionD.

2.2 Global-Output Multi-party Functionalities

In the standard multi-party scenario, the goal is to realize functionalities that, given the security pa-
rameter, the inputs of then parties and the random coins, returnn (possibly different) outputs, one for
each participant. In the case of global-output multi-party computation, instead, functionalities have a
globaloutput, which should be obtained by all the parties but at the same time ought to remain secret
to the adversary, along withn local outputs, one for each participant:

Definition 1 (Global-Output Multi-party Functionality). A Global-Output Multi-party Function-
ality is a functionality of the form:

f : N× ({0, 1}∗)n × {0, 1}∗ → {0, 1}∗ × ({0, 1}∗)n.

We are interested in functions that are computable in time that is polynomial in the security param-
eter. In particular, all inputs, as well as the global and local outputs, have length polynomial in the
security parameter. We denote the local input of partyPi with xi, and we let−→x .= (x1, . . . , xn). Also,
f0(−→x ) denotes the global output, whilefi(−→x ) denotes the local outputs of partyPi.

2.3 Non-trivial Global-Output Multi-party Functionalities

Intuitively, a global-output multi-party functionality isnon-trivial, with respect to a given distribution
D, if the global output of the function (on an input sampled from the given distributionD) is not
entirely determined by the specification of the function and of the distribution. The notion of non-
trivial global-output multi-party function can be extended in a natural way, to the notion oft-non-
trivial function, for which up tot inputs do not fully determine the output. The informal definition
requires that no adversary, controlling up tot inputs and seeing the corresponding local outputs, can
infer the value of the global output (see appendixA for a formal definition and a discussion about it).

In this paper, we consider protocols to compute global-output multi-party functions that are non-
trivial with respect to the probability distribution used in the higher-level protocol to sample the play-
ers’ inputs. In particular, and unless otherwise specified, by saying that a protocolπ computes a
(global-output multi-party) functionf , we mean thatπ computes a global-output multi-party function
f which is t-non-trivial (for some value oft) with respect to some probability distributionD. (The
exact value oft and the precise probability distributionD can additionally be specified if necessary.)

3 A Model for Private-Output Computation: The Two-Party Case

Our security definitions follow the realvs. ideal methodology, similarly to the case of standard mul-
tiparty computation (cf. e.g.[7]). Loosely speaking, such approach consists of three steps. First, one
formalizes the notion of “real world” execution of a protocol. Second, an idealized computational
process is defined in such a way that its security is immediately apparent. Finally, to prove a protocol
secure, one shows that its execution in the real world is just as “safe” as running the idealized process.

In contrast to standard two-party computation, in our context we are interested in guaranteeing the
privacy of the global output of the functionality. To this end, the idea is to define real/ideal models
and real/ideal adversaries as close as possible to their counterparts in the standard two-party setting,
while at the same time ensuring that an adversary with (partial) control over one of the parties cannot
extract information about the function’s global output from the protocol.

3.1 The Real Model: Overview

Before presenting our definitions of real-model protocols and their execution, we start with a mo-
tivating discussion about the types of attacks on the system that secure protocols should be able to
withstand.
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In standard multi-party computation, communication between the parties is assumed to be authen-
ticated but not private.1 Consequently, the weakest adversarial behavior considered in the literature
consists of passively monitoring the network, without access neither to the two parties’ inputs nor
to their (local/global) outputs (eavesdropping adversary). A more powerful adversary is captured by
the so-calledhonest-but-curiousor semi-honestmodel, in which the adversary is still passive, but has
complete access to the internal state of one of the parties. In theaugmented semi-honestmodel, the
adversary can additionally change the input and outputs of one of the parties, whereas in theactive
model the adversary has complete control over the corrupted party, so that in particular her interaction
with the other, honest party does not necessarily follow the prescribed protocol.

Classifying the adversaries.Whereas the eavesdropping adversary models anoutsiderattack, all
the other adversarial behaviors are instances ofinsiderattacks. Clearly, output-privacy is impossible
under any form of insider attack, since the adversary can just wait for an honest execution of the
protocol to complete, and then read the resulting global output off the memory of the corrupted party.
In other words, the traditional classification of adversaries is too restrictive for defining a notion of
output-privacy in two-party computation.

At a closer look, the inadequacy of traditional corruption models stems from more fundamental
considerations. In the case of global-output functionalities, which provide a common output to both
parties, it is natural to assume that each party holds a certain level of trust on the other party (e.g.,that
they are both interested in obtaining the correct outcome). However, such trust refers to thehuman
being“on the other side of the line,” and not to his/her computing environment. In particular, given
the frequency and scale of worm and virus infections that afflict our computing systems nowadays,
placing complete trust in the computing platform of anybody, no matter how trustworthy he/she may
be as a person, is (at the very least) a very dangerous leap of faith.

To go beyond the “all-or-nothing” nature of traditional corruption models, we therefore suggest to
take a more comprehensive look at the context in which the computation prescribed by the two-party
protocol takes place, and try to derive a more detailed model capturing how a two-party protocol is
carried out.

Components of a protocol.The outermost layer is theapplication context, which provides the input
and is supposed to obtain the local and global outputs, as computed by the two-party protocol. The
application context more or less corresponds to what is called the “environment” in the Universally
Composable (UC) framework [8] (although in this work we only consider sequential composition of
protocols).

The actual code implementing the two-party protocol (what we call astrategyin Section3.2below)
is split into two well separated Turing machines: thedriver and thesecure device. Roughly speaking,
the driver implements the high-level logic of the protocol, whereas the secure device is a piece of
tamper-resistant hardware withlimited capabilities, that carries out only the most sensitive computa-
tions related to the global output.

In our model, we see the secure device as part of the party’s trusted computing base: in other words,
we assume it to be bug-free, and fully complaint to its specification. Clearly, a necessary precondition
for such assumption to be fulfilled is that the actual amount of code within the secure device ought to
be as small as possible: otherwise, it would be unfeasible to subject the secure device to a thorough
verification required to establish its correctness. The driver, on the other hand, can conceivably be a
much larger piece of software, with plenty of frills and added features, which interacts with the secure
device to implement the prescribed functionality.

The execution of the driver’s code does not occur immediately within the application context; rather,
its interaction with the application context is mediated by thecontrol wrapper. The control wrapper
gets the input from the application context, and provides a (possibly altered) value as input to the

1 The recent work of [2] is an exception, but their approach cannot provide agreement, which instead is inherent
in the context of global-output functionalities.
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driver; at the end of the driver’s execution, the control wrapper receives the local output from the
driver, and forwards a (possibly altered) value as local output to the application context. The global
output, however, is communicated by the secure device directly to the application context, and is thus
never known to the control wrapper.

The control wrapper is also involved in the communication between the two parties in that the
interaction between the two corresponding drivers is in fact carried out by the associated control
wrappers. Since we are assuming the availability of authenticated channels, the control wrapper cannot
alter the content of such messages; it can, however, drop them, effectively causing the execution of
the protocol to abort.

Overall, the capabilities of the control wrapper amount to: 1) altering the input, possibly based on
the value provided by the application context; 2) altering the local output, possibly based on the value
computed by the driver; and 3) stopping the execution of the protocol at any point.

Modeling adversaries.The control wrapper aims at modeling the role that, in a real-life deployment,
is played by the mechanism used within the application to invoke crypto library code (which is rep-
resented by the driver). Under normal circumstances, the control wrapper is just a dummy interface,
that simply relays the values that it receives back and forth. However, by exploiting bugs in the sys-
tem, a piece of malicious software (like a virus) could successfully subvert such mechanism (e.g.,by
overwriting the entry point for the library function in the appropriate system table), and manage to
intercept the communication between the application and the library code. It is thus reasonable to con-
sider “partial” insider adversaries who are able to take over the control wrapper. We refer to this kind
of adversary asinput-/output-controlling, communication-halting; it closely resembles theaugmented
semi-honestmodel (cf. e.g.,[28, Chap. 7]).

A more sophisticated attack could conceivably replace the code for the driver altogether (rather
than just intercepting all of its communication as described above). We refer to this kind of adversary
asstate-controlling. We find it reasonable to distinguish such kind of attack from the previous one,
basically for the same reason that justifies the distinction between augmented semi-honest and mali-
cious behavior for the (standard) two-party case: namely, the latter kind of attacks are more difficult
to mount, for they require a deeper understanding of the details of the two-party protocol. Notice,
however, that the state-controlling adversary is still restricted to use the interface provided by the
tamper-resistant secure device, as specified by the protocol. Such restrictions are dropped for the case
of activeadversary, which obtains full control over the corrupted party. The active adversary is meant
to represent a type of attack stronger than what any virus can mount, in that it can even break the
tamper-resistance of the secure device.

We remark here that such distinction between state-controlling and active adversaries is only mean-
ingful assuming that each secure devices embeds some kind of randomness (e.g.,cryptographic keys)
which is certified by a common Public-Key Infrastructure (PKI). Indeed, if the operation of the se-
cure device were only based on uncertified randomness, a state-controlling adversary in control of
the driver could just never invoke the secure device, and instead pick some fresh randomness and
(perfectly) simulate the execution of the secure device, according to its publicly specified capabili-
ties. Without a PKI to certify the randomness used within each secure device, the other party would
have no way to notice the deceit. Therefore, by just interacting with the other party according to the
protocol, the state-controlling adversary would eventually obtain the global output, exactly as the real
secure device would.2

The new classification.To summarize, we suggest the following types of adversaries (in order of
increasing powers):

2 In the absence of a PKI, the only difference between the state-controlling and the active adversaries would
be that the former cannot cause the real secure device to output a wrong value, but this is immaterial for the
security guarantees that we want.
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1. eavesdropping: can only eavesdrop the communication between the two honest parties;
2. input-/output-controlling, communication-halting: can alter the input to the corrupted party, abort

the execution at any moment, and modify thelocal output that is returned to the application
context;

3. state-controlling: can compute the messages to be exchanged with the other party arbitrarily, but
can only use the secure device in accordance to its interface (as prescribed by the protocol);

4. active: can break the tamper-resistance of the secure device, and thus can exert total control over
the corrupted party during the execution of the protocol.

We believe the above classification to be reasonable, since it provides a spectrum of “partial” insider
attacks, progressively bridging the gap between outsider and insider adversaries. Besides, in Section5,
we prove that output-privacy is attainable against state-controlling adversaries, which are much more
powerful than eavesdropping adversaries, thus tightening the gap between possible and impossible in
the context of private-output multi-party computation.

As a final note, we remark that in the following we will focus onstatic adversaries only. Thus,
we assume that the adversary is initialized with the identity of the controlled party, some auxiliary
information (such as the security parameter`) and her own randomnessrA.

3.2 The Real Model: Definitions

Definition 2. A two-partyprotocolΠ is a pair of strategies(Π1,Π2), where eachstrategyΠi con-
sists of two Turing machines: thedriver Di and thesecure deviceSDi. Intuitively, the secure device
contains a tamper-resistant memory storing data that must be kept secret in order to protect the global
output. The driverDi, instead, is an interactive Turing machine which communicates with the other
party’s driver, while at the same time querying the associated secure deviceSDi to perform com-
putations involving the protected data stored withinSDi. The interaction between the driverDi and
the secure deviceSDi takes place via a fixed set of queries (called theinterfaceof SDi) which is
determined by the specification of the secure device itself.

It is up to the protocol designer to make sure that the driver can accomplish its task with as little
help from the secure device as possible: in particular, the secure device required for our completeness
result (cf. Section5 and AppendixE) only needs to be able to perform a handful of basic crypto-
graphic operations, which could be implemented on low-power smart-cards. We stress that such basic
set of operations should be the same for many functionalities,i.e., a given implementation of the se-
cure device should not be specific to a given functionality. In other words, once the design criteria
of the secure device are specified, these criteria should allow any protocol, respecting those criteria,
to compute any desired functionality, using thesamesecure device. In AppendixC we describe an
illustrative example of such an implementation, that it is indeedsufficientfor our completeness theo-
rem. There, the randomness that has to be kept stored in the secure device is just a secret key (for a
corresponding public-key cryptosystem). Moreover, our proposed secure device is required to be able
to perform only a couple of very simple operations. See AppendixC for further details.

Definition 3. An (honest)executionof a two-party protocol begins with the two partiesP1 andP2

receiving their inputs from the application context, and proceeds as an alternation ofP1- andP2-
rounds. In aPi-round, driverDi computes the next message to be sent to the other party based on
its input, its randomness, the messages received so far from partyP3−i, and the interaction with the
secure deviceSDi. In the last round, each driverDi submits aFinalize-query to the associated secure
deviceSDi. In response,SDi returns a “dummy” value toDi to acknowledge its query, and writes
theglobal output on its own (tamper-resistant) global output tape. At this point, driverDi produces
the local output. Notice, once again, that the driver never gets to see the value of the global output.

We now introduce a few random variables related to the execution of a private-output two-party
protocol. To this end, the key aspect to consider is the randomness used by each party. The whole
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random tapeof Pi, denotedri, is broken up into two components: thedriver randomnessrD
i (used

within the driverDi), and theprotected randomnessrP
i (used within the secure deviceSDi), which

intuitively represents the piece of randomness that must be protected in order to prevent the adversary
from recovering the global output:

ri
.= (rD

i , rP
i ), for i = 1, 2.

Thepartial viewof Pi is a random variable3 consisting of the private inputxi, the driver randomness
rP
i , the incoming messagesmI

j and the answersa` that the secure deviceSDi provides to the queries
of the driverDi:

VIEW
Π,D
i (x1, x2)

.= (xi, r
D
i ,mI

1, . . . ,m
I
t , a1, . . . , as), for i = 1, 2.

(The rationale for including the answers to the driver’s queries in the partial view is that they may
influence the outgoing messages produced byDi.)

The local outputof Pi, produced by the driverDi at the end of the computation, is denoted with
OUTPUT

Π,L
i (x1, x2) and it is implicit inPi’s partial view.

Thecomplete viewof Pi is a random variable consisting of the private inputxi, thefull randomness
ri, and all the incoming messagesmI

j generated byP3−i:

VIEW
Π,C
i (x1, x2)

.= (xi, ri,m
I
1, . . . ,m

I
t ), for i = 1, 2.

Notice that it is not necessary to include the responses provided by the secure deviceSDi in the
complete view, since these are already determined by the protected randomnessrP

i (which is part of
ri). Thus, the complete view encompasses more information than the corresponding partial view; it is
also clear that the latter can be easily derived from the former.

Theglobal outputof Pi, denotedOUTPUT
Π,G
i (x1, x2), is the value output by the secure deviceSDi

at the end of the protocol (upon the driver’s call to theFinalize-query); it is implicit inPi’s complete
view.

Intuitively, at the end of a run ofΠ, the global outputs of the two parties should agree. We model
this by introducing a random variableOUTPUTΠ,G(x1, x2), defined as follows:

OUTPUTΠ,G(x1, x2)
.=

{
OUTPUT

Π,G
1 (x1, x2) if OUTPUT

Π,G
1 (x1, x2) = OUTPUT

Π,G
2 (x1, x2)

⊥ otherwise

where⊥ is a special “failure” symbol.
We also denote withOUTPUTΠ(x1, x2) the tuple:

(OUTPUTΠ,G(x1, x2), OUTPUT
Π,L
1 (x1, x2), OUTPUT

Π,L
2 (x1, x2)).

Definition 4. We say that a two-party protocolΠ implementsa private-output two-party functionality
f if, for any inputsx1, x2 for the two parties, (honest) execution ofΠ results in the two secure devices
outputting the same global output, and the distribution of the tuple consisting of such global output,
followed by the local outputs produced byD1 andD2 is (computationally) indistinguishable from the
distribution of the functionalityf on inputx1, x2; or, in formula:

{f(x1, x2)}x1,x2

c≡{OUTPUTΠ(x1, x2)}x1,x2

where
c≡ denotes computational indistinguishability by PPT distinguishers.

3 All the random variables we define are over the probability space induced by the random coins of the two
parties.
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Real-Model Adversaries.We now discuss how we model the influence that an adversary can exert
on the execution of a two-party protocol. For short, we will useX ∈ {EAVE, I /O, STATE, ACT} (stand-
ing for “eavesdropping,” “input-/output-controlling, communication-halting,” “state-controlling,” and
“active,” respectively) to denote the type of adversary.

A real-model adversaryA (of any kindX) is initialized with an auxiliary inputz (which includes
the security parameter̀) and some random coinsrA. Additionally, different types of adversaries
obtain different information about the execution of the protocol (possibly in an interactive and adap-
tive way). In the following, we model this by introducing random variablesX VIEWΠ

A(z),1(x1, x2)
and X VIEWΠ

A(z),2(x1, x2) that an adversary of typeX contributes to define. Then,A gets to see

X VIEWΠ
A(z),ı(x1, x2), for the indexı corresponding to the party controlled4 byA. Following a com-

mon practice for standard two-party computation [28], in the transcript of the protocol we replace
the local output of the controlled party with the adversary’s output. Also, w.l.o.g. we assumeA’s
output to consist of all the information thatA sees during a protocol’s execution, namelyz, rA and
X VIEWΠ

A(z),ı(x1, x2).
Eavesdropping adversaries do not affect the execution of the protocol in any way. The view of a

eavesdropping adversary consists just of the messages exchanged between the two parties:

EAVE VIEWΠ
A(z),ı(x1, x2)

.= (mI
1, . . . ,m

I
t ,m

O
1 , . . . ,mO

t ).

wheremI
j andmO

j denotes respectively incoming and outgoing messages received by and sent from
partyPı.

In the presence of the other kind of adversaries, the view of both parties’ maintains the same format
as in the honest case:

X VIEWΠ
A(z),i(x1, x2)

.= (xi, r
D
i ,mI

1, . . . ,m
I
t , a1, . . . , as), for i = 1, 2

whereX ∈ {I /O, STATE, ACT}. However, the way in which such views are computed differs substan-
tially from the honest execution, in ways that we now describe.

In the case of anI /O-adversary, the execution begins withA seeing the inputxı and the randomness
rD
ı for the controlled party’s driverDı. Then,A gets to decide (based onz, rA, xı and rD

ı ) the
value x̂ı that Dı should use in the protocol: we denote this with the notationx̂ı

.= A(ı, z, rA, xı,
rD
ı ). Similarly, during the execution,A gets to see all the information sent to/from the driver of the

controlled partyPı and can additionally stop the driverDı at any moment, effectively causing the
protocol to abort. To denote this, for any(j, `)-prefix (mI

1, . . . ,m
I
j , a1, . . . , a`) of messages (from

D3−ı) and answers (fromSDı), we letA(ı, z, rA, xı, rD
ı , mI

1, . . . ,m
I
j , a1, . . . , a`) denote aYES/NO-

value indicating whetherA decides to abort execution at the(j, `)-prefix or not. At the end of the
execution,A obtains the local output fromDı, and outputs her entire view. Notice thatA does not
obtain the global output from the secure deviceSDı; however,A can preventSDı from producing
a global output altogether by stopping theFinalize-query that the driverDı issues to theSDı at the
end of all its computation.

In the case of a state-controlling adversaryA (controlling partyPı), A gets to play the role of the
driverDı. Thus,A obtains the inputxı, and allPı-round are carried out according toA’s (rather than
Dı’s) code. We remark thatA can also interact with the secure device, querying it on arbitrary values,
but such interaction still has to occur using the interface provided bySDı. As for the notation, for a
STATE-adversaryA, we useA(ı, z, rA, xı, rD

ı , mI
1, . . . ,m

I
j , a1, . . . , a`) to denote the next message

thatA wishes to send toP3−ı (or the next query to be asked toSDı, whichever is appropriate).
In the case of an active adversary, all computations occur as for the state-controlling adversary,

except that nowA can additionally play the role of the secure deviceSDı (as well as the driver’s of
partyPı), so that now the global output is exposed toA. Notation remains as in theSTATE case, except
that there is no secure device to query.
4 Although aEAVE-adversary does not actually control any party, for notational convenience we assume that one

of the parties (e.g.,partyP1) is controlled in a “null” way.
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3.3 The Ideal Model

We now provide definitions of private-output two-partyideal processand ofideal-model adversaries.
By analogy to the real model (cf. Section3.1), each partyPi in the ideal model is a pair of “dummy”
Turing machines: a driverDi and a secure deviceSDi. The driver has access to the security parameter
` and is attached to two tapes: theinput tape and thelocal outputtape. The secure device can write to
theglobal outputtape, and it exports aFinalize-query (that the driver may or may not call during the
ideal execution).

As in [7], the ideal process is parameterized by the functionalityf that the parties wish to evaluate.
Recall (cf. Section2) that a two-party functionality, in the private-output setting, is defined asf :
N × ({0, 1}∗)2 × {0, 1}∗ → {0, 1}∗ × ({0, 1}∗)2. In the ideal model we assume the existence of an
incorruptible probabilistic trusted third partyT , which knowsf and`.

An ideal-process adversaryB is an interactive PPT Turing machine which may influence the be-
havior of the controlled party in several ways. Since we are considering the static case,B is initialized
with the identity of the controlled party (if any), some random inputrB, along with an auxiliary input
(which includes the security parameter`).

In what follows, we describe the execution of the ideal process assuming the presence of aninput-
/output-controlling, communication-haltingadversary controlling one of the two party. Note, however,
that the definition remains the same in the case ofstate-controllingadversaries—being in the ideal
model, there is no communication between the drivers that could be altered by such adversaries.
Furthermore, this definition also applies to theactivescenario: in particular, an ideal active adversary
is not conceded access to the secure device since, in the ideal model, the tamper-resistance of the
secure device ought to be ideali.e.,unbreakable. In the case ofeavesdroppingadversary, instead, none
of the parties is ever controlled by the adversary. Thus, the following definition applies to adversaries
of any typeX ∈ {EAVE, I /O, STATE, ACT}.

Input Stage
Inputs to the parties: Each party obtains an inputxi. The controlled party communicates its input
to the adversary. Recall that the parties do not have random input in the ideal model.
Inputs to the trusted party: An honest party always sendsxi to the trusted partyT . A controlled
party may, depending on the adversary’s strategy (which is based onxı̄, as well as on the auxiliary
input and her randomness), either abort or send somex̂ı̄ ∈ {0, 1}|xı̄| to T .

Actual Computation
T provides the local output to the first party: T evaluates the functionality on the received inputs
(and fresh randomness, in casef is a probabilistic functionality), and sends the first local output
to the first party’s driver. IfT received only one input, then it sends⊥ to both parties’ drivers and
secure devices.
T provides the local output to the second party: If the first party is controlled, it hands off its local
output (just obtained fromT ) to the adversary. ThenB may, depending on all the information
received so far, decide to “stop” the trusted party. In this case,T sends⊥ to the second party’s
driver and to both parties’ secure devices. Otherwise,T sends the second local output to the
second party’s driver.
T provides the global output to the first party: If the second party is controlled, it hands off its
local output (just obtained fromT ) to the adversary. ThenBmay, depending on all the information
received so far, decide to “stop” the trusted party. In this case,T sends⊥ to both parties’ secure
devices. Otherwise,T sends the global output to the first party’s secure device.
T provides the global output to the second party: If the first party is controlled, the adversary
may, depending on all the information received so far,5 decide to “stop” the trusted party. In this
case,T sends⊥ to the second party’s secure device. Otherwise,T sends the global output to the
second party’s secure device.

5 Note that the information available to the adversary at this point is the same as that available in the second
step of the Actual Computation stage, since the global output is stored in the secure device and is therefore
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Output Stage
Local output: An honest party’s driver always writes the local output received from the trusted
party to its local output tape. A controlled party’s driver may write an arbitrary value to its local
output tape, depending on the strategy of the adversary.
Global output: An honest party’s driver always invokes theFinalize-query on the secure device,
which causes it to write (on its global output tape) whatever value received fromT . A controlled
party’s driver may or may not invoke theFinalize-query on the corresponding secure device. If
such query is not invoked, we assume that the global output tape of this party contains⊥ (as an
initial default value). If theFinalize-query is invoked, the secure device of the controlled party
writes the global output received fromT to its global output tape.

Ideal-Model Adversaries.The ideal-model adversary affecting the execution of the ideal process as
described above can be captured by the following definition:

Definition 5 (Ideal-Model Adversary). An ideal-model adversary is a PPT Turing machineB such
that, if ı is the index of the controlled party,xı is the corresponding input, andz and rB areB’s
auxiliary input and random coins, then:

– B(ı, z, rB, xı) outputs an altered input̂xı ∈ {0, 1}|xı| for Pı;
– B(ı, z, rB, xı, yı) outputs(ŷı, bhalt, bfin) ∈ {0, 1}∗×{EARLY, LATE, NEVER}×{YES, NO}, where:

1. ŷı is the altered output for partyPı;
2. bhalt denotesB’s decision on aborting the execution (EARLY = abort right after gettingyı;

LATE = abort afterSDı getsy0; NEVER = do not abort);
3. bfin specifies whether or notB wishes to allowSDı to outputy0.

3.4 The Security Definition

Let f : N × ({0, 1}∗)2 × {0, 1}∗ → {0, 1}∗ × ({0, 1}∗)2 be a two-party functionality andΠ be a
private-output two-party protocol implementingf . Let X ∈ {EAVE, I /O, STATE, ACT}, and letA be a
real-model adversary of typeX, andB be an ideal-model adversary.

Definition 6. Thejoint real-model execution ofΠ underA controlling partyPı on input pair(x1, x2)
and auxiliary inputz, is defined as:

X REALΠ
A(ı,z)(x1, x2)

.= ((OUTPUT
Π,G
1 (x1, x2), Γ1), (OUTPUT

Π,G
2 (x1, x2), Γ2))

where we haveΓı
.= (z, rA, X VIEW

Π,L
ı (x1, x2)), Γ3−ı

.= OUTPUT
Π,L
3−ı (x1, x2), and the random

variablesX VIEW
Π,L
1 (x1, x2), X VIEW

Π,L
2 (x1, x2), OUTPUT

Π,G
1 (x1, x2), OUTPUT

Π,G
2 (x1, x2), and

OUTPUT
Π,L
3−ı (x1, x2) refer to the same execution ofΠ in the presence ofA(z) controlling partyPı,

and are computed as described in Section3.

Definition 7. The joint real-model execution ofΠ underA is defined as the ensemble:

X REALΠ
A

.= {X REALΠ
A(ı,z)(x1, x2)}x1,x2,ı,z

Definition 8. Thejoint ideal-model execution off underB controlling partyPı on input pair(x1, x2)
and auxiliary inputz, is defined as:

IDEAL
f
B(ı,z)(x1, x2)

.= ((y1
0 , ŷ1), (y2

0 , ŷ2))

where:

x̂ı
r← B(ı, z, rB, xı), x̂3−ı ← x3−ı, (y0, y1, y2)

r← f(x̂1, x̂2), (ŷı, bhalt, bfin)
r← B(ı, z, rB, xı, yı),

ŷ3−ı ←

{
⊥ if ı = 1 ∧ bfin = EARLY

y3−ı otherwise
yı
0 ←

{
⊥ if bfin = NO

y0 otherwise
y3−ı
0 ←

{
⊥ if bhalt 6= NEVER

y0 otherwise

not revealed to the adversary. We prefer to split the strategy of the adversary in two steps only for clarity of
exposition.
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Definition 9. The joint ideal-model execution off underB is defined as the ensemble:

IDEAL
f
B

.= {IDEAL
f
B(ı,z)(x1, x2)}x1,x2,ı,z

Definition 10. ProtocolΠ is said tooutput-privatelycomputef with respect toX-adversaries (where
X is one of{EAVE, I /O, STATE, ACT}) if Π implementsf (in the sense of Definition4), and for every
PPT real-model adversaryA of typeX, there exists a PPT ideal-model adversaryB, such that:

IDEAL
f
B

c≡ X REALΠ
A .

3.5 Further Comments

It is quite easy to see that our definition can be viewed as a generalization of that by Canetti [7].
Such comparison is discussed in appendixB. Also the extension ton-party functionalities is quite
straightforward.

4 Impossibility Result

In this section, we formally state the impossibility result briefly discussed in Section3. This is interest-
ing because it shows that our definition formally captures the intuition that private-output multiparty
computation should be impossible when facing active adversaries.

The following theorem (whose proof is included in AppendixD) is given for the two-party case,
but it can be easily generalized to the multi-party case.

Theorem 11. Letf be any1-non-trivial two-party function (with respect to some distributionD) and
π be any two-party protocol that computesf . Then there exists an active adversaryA (controlling one
player) such that, for any ideal process active adversaryB, the two distribution ensemblesIDEAL

f
B

andACT REALπ
A are not computationally indistinguishable, that is, there cannot exist anyπ that can

output-privately computef in the presence ofA.

5 A Completeness Theorem for State-Controlling Adversaries

Given the impossibility result for active adversaries (cf. Section4), in this section we focus on the
problem of realizing secure private-output two-party computation in the presence of state-controlling
adversaries. In particular, we show that if enhanced trapdoor permutations [29,28] exist, then any
functionalityf can be privately computed in the presence of computationally bounded state-control-
ling adversaries.

Theorem 12. Let ` be a security parameter. If enhanced trapdoor permutations exist, then for any
private-output two-party functionalityf , there exists a protocolπ output-privately implementingf
with respect toSTATE-adversaries.

An overview of the resulting construction and proof are included in AppendixE. For the sake of
modularity, we prove the theorem for the case ofI /O-adversaries (and then we use standard techniques
to extend the proof to the case ofSTATE-adversaries). In a nutshell our proof goes as follows. As a
first step we describe an adequate hybrid model. Next we show that this model can be used toreduce
the problem to that of realizing deterministic functionalities. Finally, we exhibit a construction for any
deterministic function seen as an arithmetic circuit.

Here we note that as an interesting by-product we get a (sequential) composition theorem (Theo-
rem15) for the framework of private-output two-party computation. See AppendixE for full details.

Theorem 13 (informal). Assume a protocolΠg output-privately computes a functionalityg, and
a protocol Πf |g output-privately computesf using ideal calls tog. Then the composed protocol
Πf .= Πf |g ◦Πg output-privately computesf in the real model.
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A Formal Definition of Non-Triviality
In Section2, we informally introduced the notion oft-non-triviality for global-output multi-party
functionalities as requiring that no adversary controlling up tot of the inputs, and seeing the corre-
sponding local outputs, can completely determine the global output, when the honest parties’ inputs
are sampled according to a given distribution.

More precisely, letD be the distribution according to which players’ inputs are assumed to be
sampled (notice that this allows the inputs to be arbitrarily correlated). LetA = (A1,A2) be a proba-
bilistic, polynomially bounded, two-stage adversary controlling up tot players. In the followingA is
allowed to access the private inputs and the local outputs oft players. For simplicity, and without loss
of generality, we will assume thatA controls playersP1, . . . , Pt.

Definition 14 (Non-triviality). LetD be a samplable distribution. We say that a global-output multi-
party functionf is t-non-trivial with respect toD, if no PPT adversaryA can predict the global
output of the function with probability negligibly close to 1, when the inputs of the players are chosen
according toD. More formally, we require that for anyA and sufficiently largè,

Pr

y0 = y′0

∣∣∣∣∣∣∣∣∣
(x1, . . . , xn) D← {0, 1}`; ρ r← {0, 1}`1 ;
(x̂1, . . . , x̂t, STATE) r← A1(`, x1, . . . , xt);
(y0, y1, . . . , yn)← f(`, x̂1, . . . , x̂t, xt+1, . . . , xn, ρ);
y′0

r← A2(STATE, y1, . . . , yt)

 ≤ 1− µ(`)

where`1 is a parameter polynomially related to`, µ(·) is a non-negligible function, and the probability
is over the random coin tosses ofA, the random choice ofρ in {0, 1}l1 and the random choice of the
inputs according toD.

We emphasize that the notion of non-triviality is deeply different from that oft-private functions
as defined by Kushilevitzet al. [15,1], in which the adversary, when seeing up tot inputs,as well
as the output, tries to get additional information about the other inputs. Our notion is instead related
to the notion ofunpredictable function, as defined by Lindellet al. in [13]. Since our setting deals
with global-output multi-party functionality, the notion of non-triviality needs to take into account
the distinction of global and local outputs, and is consequently more stringent. Indeed, at-non-trivial
function is required to be unpredictable with respect to adistribution(rather than just to some specific
inputs). Moreover, in our context the adversary should not be able to predict the global outputy0, even
if she is given access to the local outputsy1, . . . , yt of the controlled parties.
Remark. Note that we refer to non-triviality as a property of a function with respect to a distribution.
Intuitively, this is because efficiently computable multi-party functions may not be non-trivial with
respect to all (efficiently samplable) distributions (e.g.,consider a deterministic functionality and an
input distribution that, conditioned on any fixed values for the firstt inputsx1, . . . , xt, assigns the
entire marginal probability mass to a single tuple forxt+1, . . . ,xn).
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B Further Comments on the Model

B.1 Extension ton-Party Functionalities, n > 2

The definition given in Section3 for the two-party setting can be easily generalized to the multi-
party case. For the case of eavesdropping adversaries the definition of secure private-output multi-
party computation is pretty much the same as in the two-party case. Following [28], we consider two
different scenarios to model general adversarial behaviors. The first model is very similar to the two-
party case: the adversary is permitted to control even a majority of the participants and early abortion
is allowed. In the second model the adversary is only allowed to corrupt a strict minority of the players
and early abortion can actually be prevented.

B.2 Comparison with Canetti’s Definition

We now briefly discuss the relation between our approach and the one by Canetti [7], and argue that
our definition actually generalizes the one presented in [7] for the setting of standard multi-party
computation secure against static adversaries.

Let us briefly recall the ideal process as described in [7]. The input-substitution phase is basically
identical to ours: the ideal process adversary sees (and possibly alters) the inputs of the corrupted
parties. In the computation stage the parties hand the inputs toT . The latter performs the required
computation (i.e., T evaluates thef on the given inputs) and sends back to each player the corre-
sponding output valueyi. The output phase goes exactly as ourlocal output phase, whereas no global
output is defined in [7].

In our model, on the other hand, after terminating the actual computation stage, the trusted partyT
first hands to each playerPi his local outputyi, and then (in theglobaloutput stage) hands to eachPi

the (common) valuey0. Now, if we sety0 = ⊥, our definition becomes identical to the one proposed
by Canetti. In particular, the separation of each party’s strategy in two components (the driver and
the secure device) becomes immaterial—when there is no global outputy0, there is no information
requiring the additional security provided by the secure device, which is thus unnecessary. For the
same reason, in such case the definitions of real-model state-controlling and active adversary coincide,
and the impossibility result of Section4 no longer applies (since a functionality whose global output
is always⊥ cannot be non-trivial in the sense of Definition14).

Our definition, however, is more general, because it allows to consider more general scenarios such
as those where no local data is sent to the players (i.e.,yi = ⊥) or those where an “hybrid” solution is
required (i.e.where bothy0 andyi are different from⊥).

C Informal Description of the Secure Devices’ Capabilities

In this section, we informally describe a simple interface for the secure devices that is actually suffi-
cient to prove our completeness theorem.

We assume that each secure device comes with a public keypk (for a corresponding encryption
scheme) which is certified by an adequate authority and that is made available, together with its
certificate, by the driver that uses it. The corresponding secret keysk is the only secret that the secure
device is required to store.

The driver communicates with the secure device through the following set of queries. LetM be the
message space for the public-key cryptosystem used by the secure device. For simplicity, we assume
thatM is the same for all the parties participating to the protocol (i.e., drivers and secure devices).

Decrypt&Combine: This query has the following syntax. It takes an input of the form(n,�, (C1,
. . . , Cn), a), where:

– � is an associative operator (typically⊕, + or ·);
– n is an integer such that ifn 6= 0, (C1, .., Cn) is a vector of ciphertexts, produced using the

secure device’s public key, of messagesm1, ..,mn ∈M;
– k is an integer; and
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– a is an element ofM.
The secure device, upon receiving such a query proceeds as follows.

– If n > 0, it decrypts the received ciphertexts and combines them all witha using the�
operator.

– If n = 0, the result is simplya.
Let y0 be the obtained result: the secure device sends a dummy value to the driver to acknowledge
its query and stops.

Finalize: Whenever the secure device receives aFinalize-query from driverD, it returns toD a
pointerp and writes the global outputy0 (if this is defined) on its own (tamper resistant) output
tape. The pointerp is interpreted as follows. It is used by the driver to have implicit access to the
global output. More precisely, the driver cannot use the pointer to actually access (i.e. see) the
global output. Rather it usesp to be able to perform future operations usingy0 (for example ify0

has to be used as input for future protocols).
If a Finalize-query is asked after severalDecrypt&Combine-queries, the secure device simply
writes on its output tape all the global outputs computed so far, and sends several pointers to the
driver.

D Proof of Theorem11

To prove the theorem we show an active, polynomially bounded, real-model adversaryA such that
for any active, polynomially bounded, ideal-process adversaryB, the produced distributions are ef-
ficiently distinguishable. Letπ be any two-party protocol for computingf . At the beginning of the
protocol,A obtains the input of the corrupted player (without loss of generality we can assume that
P1 is the corrupted player). NextAmerely monitors the internal memory ofP1 during the entire exe-
cution of the protocol. When the outputy0 of f is available,A reads it and, at the end of the process,
she outputsy0 together with all the informations gathered during the execution ofπ. Notice that since
we are assuming thatf is computed byπ, the output of the honest player will be (or at least it will
contain)y0.

Let IA be the set of active, ideal adversaries whose running time is polynomially related to the
running time ofA. Notice that the crucial difference betweenA andanyadversaryB ∈ IA, is that
A can access the input, the local output and the global output of the corrupted player, whileB can
see only the inputx1 and the local outputy1 (which are assumed not to disclosey0 due to the 1-non-
triviality of f ). This implies thatB cannot “guess”y0 with probability higher than1− µ(`) for some
non-negligible quantityµ(`) (` is the usual security parameter).

Therefore we can construct a polynomial time distinguisher∆ for the two distribution ensembles
ACT REALπ

A and IDEAL
f
B as follows.∆ receives on input a challenge sampled according to either

the IDEAL
f
B distribution ensemble or theACT REALπ

A one (depending on some secret bitb). Then∆
simply checks whether the output of the adversary equals that of the honest player or not. If this is the
case, it outputs 1 (as its guess for the real process), otherwise it outputs 0.

Let us analyze the probability of success of∆. We define the advantage “Real/Ideal” of∆ as
follows

AdvRI(∆) = |Pr[∆→ 1|b = 1]− Pr[∆→ 1|b = 0]| .

Our goal is to prove that this quantity is non negligible. Clearly, one has thatPr[∆ → 1|b = 1] = 1.
On the other hand if the challenge comes from an ideal execution of the protocol, then any ideal
adversaryB can produce a distribution which is indistinguishable from the real one only if it “guesses”
y0 correctly. Thus

AdvRI(∆) = 1− Pr[∆→ 1|b = 0] = 1− Pr[B(x1, y1)→ y0] > µ(`),

where the last inequality comes from the 1-non-triviality of the functionalityf . This concludes the
proof. ut
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E Proof of Theorem12

The construction of a secure protocol for an output-private two-party functionalityf is based on the
same technical tools as for the case of standard two-party computation. In particular, below we present
the outline of the proof of a variant of Theorem12 for the case ofI /O-adversaries; its extension to
the case ofSTATE-adversaries relies on the use of authentication, commitments and zero-knowledge
proofs in a way that is essentially identical to the compilation of private two-party protocols into
secure ones. We defer the details to a full version of this paper.

E.1 The Hybrid Model

In this section, we describe the so-called “hybrid model” we are going to use in our proof. The mo-
tivation for the model, however, is more general; specifically, the goal is to enable composition of
cryptographic protocols with output privacy, following the modular approach as described by [7] for
designing such protocols. The hybrid model we are about to define is very similar to that used in
standard multi-party computation, so we just recall the main lines here. For more technical details, we
refer the reader to [7].

Let g be a private-output two-party functionality. A protocol for theg-hybrid model is defined as
in Definition 2, augmented with a mechanism for “g-oracle calls”. Such oracle is available to both
parties, and must be called with two inputs, one from each party; the result of the oracle call is a pair
of local outputs (one for each party’s driver), along with a global output to be delivered to both parties’
secure devices. In particular, each party’s driver has an additional read/write oracle-tape, while secure
devices have an extra read-only oracle-tape. Oracle calls are performed as follows:

1. The invoking party’s driver (for instance,D1) writes its inputxg
1 for the g-functionality on the

oracle tape, and then sends a special messageoracle request to the other driver (to notify that an
oracle invocation has been initiated).

2. In response, the other driver writes on its own oracle tape its inputxg
2 to theg-functionality, and

answers with another specialoracle call message.
3. Both drivers inform the associated secure device that an oracle call is occurring. This again, is

modeled with a special query to the secure devices.
4. At this point, the oracle is invoked (intuitively, the functionalityg is evaluated on input(xg

1, x
g
2)),

and the local outputsyg
1 andyg

2 are written on the oracle tapes of the call initiator and responder,
respectively. Additionally, the global output of the functionalityyg

0 is written on the oracle tapes
of both secure devices.

5. Finally, each secure deviceSDi returns to the driverDi a specialhandle, or pointerto the global
outputyg

0 . We stress that such pointer does not allowDi to read the value ofyg
0 , but is needed to

enableDi to make future references to such value in subsequent interactions withSDi.

The notions ofprotocol executionandoutput-private viewsw.r.t. X-adversaries (X ∈ {EAVE, I /O,
STATE, ACT}), as defined in Section3, can be directly extended to theg-hybrid model to defined
theoutput-private securityof the protocol in the hybrid model; we omit the details for conciseness.
Additionally, one can define a notion ofoutput-private reduction: a protocolΠf |g output-privately
reducesf to g w.r.t. X-adversaries, ifΠf |g output-privately computesf (w.r.t. X-adversaries) in the
g-hybrid model.

E.2 Composition of Protocols underI /O-adversaries.

In this paragraph we show that the standard notion of protocol composition still applies in our setting.
Let Πg be a protocol implementingg, andΠf |g be a protocol implementingf in the g-hybrid

world. The composed protocolΠf .= Πf |g ◦ Πg is obtained fromΠf |g, by replacing invocations
of theg functionality inΠf |g with real-world executions ofΠg. Notice that bothΠf |g andΠg are
pairs, consisting of a driver and a secure device; thus,Πf will also be a pair, whose driverDf may
ask queries (namely,Decrypt&Combine andFinalize) to the secure deviceSDf .
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Fig. 1.The hybrid model

By a standard argument, it is possible to prove that when the two components are secure w.r.t.I /O-
adversaries, the composed protocolΠf is also secure w.r.t. the same class of adversaries, thus leading
to the following result:

Theorem 15 (Composition Theorem — I /O-adversaries).Given a protocolΠf |g output-privately
reducingf to g (w.r.t. I /O-adversaries), and a protocolΠg output-privately computingg (w.r.t. I /O-
adversaries), the composed protocolΠf .= Πf |g ◦ Πg output-privately computesf (w.r.t. I /O-
adversaries).

Proof (Sketch).Given the security ofΠf |g andΠg, there exist simulatorsSf |g andSg. Proving the
theorem amounts to exhibit a simulatorSf for Πf . Such simulator is built by composing the existing
simulators.

1. First Sf |g is run to obtain a simulated execution ofΠf |g in theg-hybrid world (it is easy to see
that Sf can feed its own input toSf |g in this phase); during the executionSf |g has to make a
polynomial number of oracle calls to the sub-protocolg;

2. ThenSg is used to fill in the “gaps” left by the simulation created in the previous step. In other
words, for each invocation of theg-functionality occurring in the simulated transcript, the simu-
latorSg is invoked on the corresponding input/output values to obtain a suitable transcript for the
sub-protocolΠg.

Now we show that such simulatorSf produces a transcript which is computationally indistinguish-
able from one resulting from a real execution ofΠf with the same inputs and outputs. This is done
using a standard hybrid argument: letN be the number of (sequential) invocations of theg that occur
in Πf |g. Then, one goes through a sequence ofN + 1 hybrids experiments:

1. the first experiment produces the transcript according to the simulatorSf ;
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2. the second experiment consists in first runningΠf |g and then simulatingg-calls usingSg (indis-
tiguishability from the previous experiment follows by the security ofΠf |g);

3. subsequent hybrids replace, one after the other, simulated executions produced bySg with real
execution ofΠg (indistinguishability follows from the security ofΠg).

The composition theorem follows from the observation that the last experiment in the sequence of
hybrids is the real protocol. ut

E.3 Deterministic vs.probabilistic functionalities

We now show how the computation with private output for general (probabilistic) functionalities can
be reduced to that of deterministic functionalities [28, p.638].

Since a probabilistic functionality with inputsx andy, using randomnessr can be viewed as a deter-
ministic functionality of(x, y, r), we can construct the deterministic counter part of any functionality
f by adequately sharing the randomness between the two parties.

This mechanism allow us to focus on the problem of realizing deterministic functionalities. More
formally, a randomized functionalityf(x1, x2; r) (wherer denotes the randomness) can be reduced
to its deterministic counterpart̄f :

f̄((x1, r1), (x2, r2))
.= f(x1, x2; r1 ⊕ r2)

wherer1, r2 are chosen uniformly at random by Party 1 and Party 2, respectively.
It is easy to see that we can now consider an hybrid model in order to compute any functionality.

Indeed, the reduction from the general case to the deterministic case basically consists of the realizing
the following protocolΠf |f̄ for thef̄ -hybrid world: given his inputxi, each partyPi randomly selects
a valueri, and simply invokes thēf -functionality on input(xi, ri). The probabilistic functionalityf
is then inherently computed. For this reason, we now have to concentrate on protocol realizingΠ f̄ .

E.4 Construction for Deterministic Functionalities.

We now describe a construction of output-private secure (w.r.t.I /O-adversaries) protocolsΠf for any
deterministic functionalityf . Following the approach of [28], we think off as an arithmetic circuit,
thus consisting of a sequence of additions and multiplications in a given finite field.

The general way of going is to evaluate the circuit gate by gate in a distributed fashion. This is
nothing but the historical result of [29]. For the addition gates, the operation is trivial and requires
no interaction between the players. While for the multiplication gates, one needs interaction and the
security relies on the Oblivious Transfer (OT) primitive; it is a well-known result that OT exists if
(enhanced) trapdoor permutations exist.

Definition 16 (Enhanced trapdoor permutations).A indexed family of functions is said to been-
hanced trapdoorif it is a trapdoor permutation family, and additionally, the one-wayness property
still holds for a random element in the domain, even if the coins used to sample this element are made
public.

Intuitively speaking, it is clear that the rationale in [29] can be viewed as a special case of private
output computation, where the secure devices arenotused and the global output is always⊥.

In the rest of this section, we then address the following points:

1. How to share the inputs between the parties;
2. How to evaluate securely the arithmetic circuit forf , in a distributed manner;
3. How to reconstruct the outputs.
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Description of the Protocol.In the first phase, each party’s driverDi splits its own inputxi into two
sharesx1

i , x
2
i , with xi = x1

i + x2
i . Then,D1 sendsx2

1 to D2 andD2 sendsx1
2 to D1. The two drivers

proceed by evaluating the circuit gate by gate.
Then we turn to evaluating the arithmetic circuit. Addition gates are easy to take care of, since

shares of the sum can be non-interactively obtained from the addends. As for multiplication gates, it
is possible to use essentially the same oblivious-transfer-based protocol, originally proposed by [29].
The only difference is that, in our setting, at the end of the protocol, the two secure devices will
contain⊥ as global output. In other word, we use the same paradigm using a (slightly) modified OT-
protocol, in which both drivers and secure devices get an output, however the output for secure devices
is always set to⊥ (i.e., the SDs are not used in practice). Clearly, this minor modification does not
affect the security properties of the original construction, which thus securely reduces evaluation of
multiplication gates to (modified) oblivious transfer. Similarly, since the (classical) oblivious transfer
functionality does not have a global output, standard two-party protocols for oblivious transfer can be
straightforwardly translated to the private-output setting in order to implement this modified version
of OT.

Finally, it remains to discuss how the two parties reconstruct the global outputy0 and the local
outputsy1, y2, once all gates of the circuit have been evaluated. This phase involves the secure devices
as follows. First note that at the end of the evaluation phase, each party holds three shares:yi

0, y
i
1, y

i
2

for the global output and the two local outputs, respectively. Also we recall that each secure device
SDi has a public keyPKi (certified via a PKI); the public key is made available by the party.

The reconstruction phase proceeds by having driverD1 sendingy1
2 and the certifiedPK1 to D2,

andvice versa. At this point, eachDi computes its local output by recombining the sharesy1
i andy2

i

into yi = y1
i + y2

i . Next, D1 sends the valuey1
0 , encrypted underPK2, while D2 sends the value

y2
0 , encrypted underPK1. Being encrypted, such values are not intelligible by the drivers. Thus, each

driver Di invokes his secure device to use thereceivedencryption, sayCi, along with the shareyi
0,

through a queryDecrypt&Combine(Ci, y
i
0,+). A Finalize-query then give (handle) access to the

global outputy0 for future needs.

Security Analysis.Given the security of the basic building blocks (i.e.,Oblivious Transfer, which re-
lies on the existence of enhanced trapdoor permutations), to get a proof of security it remains to prove
that the overall construction is secure in the OT-hybrid model, namely that there exists a simulator
that can produce a transcript indistinguishable from that of the real execution, given oracle access to
the OT-functionality.

To this end, we need to simulate the view of the adversary, which includes (1) the messages ex-
changed between the drivers during the gate-by-gate evaluation of the circuit, (2) the messages ex-
changed to recombine the shares of the local and global outputs, and (3) the communication between
the driver of the controlled party and the corresponding secure device.

Messages of type (1) can be simulated as in [29], essentially proceeding backwards from the local
outputs, deriving known shares while choosing at random the shares of unknown quantities.

Messages of type (2) and (3) consist just of public information and ciphertexts, that can be simulated
by encrypting a fixed message, assuming semantic security of the underlying encryption scheme.ut
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