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ABSTRACT
Traitor Tracing Schemes constitute a very useful tool against
piracy in the context of digital content broadcast. In such
multi-recipient encryption schemes, each decryption key is
fingerprinted and when a pirate decoder is discovered, the
authorities can trace the identities of the users that con-
tributed in its construction (called traitors). Public-key
traitor tracing schemes allow for a multitude of non trusted
content providers using the same set of keys, which makes
the scheme “server-side scalable.” To make such schemes
also “client-side scalable,” i.e. long lived and usable for
a large population of subscribers that changes dynamically
over time, it is crucial to implement efficient Add-user and
Remove-user operations. Previous work on public-key traitor
tracing did not address this dynamic scenario thoroughly,
and there is no efficient scalable public key traitor tracing
scheme that allows an increasing number of Add-user and
Remove-user operations.

To address these issues, we introduce the model of Fully
Scalable Public-Key Traitor Tracing, and present the first
construction of such a scheme. Our model mandates for
deterministic traitor tracing and an unlimited number of ef-
ficient Add-user operations and Remove-user operations. A
fully scalable system achieves an unlimited number of revo-
cations while retaining high level of efficiency by dividing
the run-time of the system into periods. Each period has a
saturation level for the number of revocations. When a pe-
riod becomes saturated, an efficient new-period operation is
issued by the system server that resets the saturation level.
We present a formal adversarial model for our system tak-
ing into account its periodic structure, and we prove our
construction secure, both against adversaries that attempt
to cheat the revocation mechanism as well as against adver-
saries that attempt to cheat the traitor tracing mechanism.

Keywords: Digital Content Distribution, Traitor Tracing,
Scalability, Broadcast Encryption, Multicast

1. INTRODUCTION
An important application of global networking is digital con-
tent distribution. For such an application (e.g., Pay-TV) to
remain economically viable for the long run, it is important
to design distribution schemes with certain basic proper-
ties: (1) Security– this assures a subscription-based model
of exclusive content reception; (2) scalability– which assures
efficient operation supporting many content providers and
a dynamically changing population of subscribers; and (3)
piracy protection– to prevent or deter illegal distribution.

To achieve security, a content distribution scheme requires
to implement multi-user encryption mechanism that assures
that only current subscribers can receive the content.

Regarding piracy protection, the state of the art method
which applies to software-based platform-independent ar-
chitectures, is the notion of traitor tracing schemes which
we concentrate on in this work. A traitor tracing scheme
is a multi-recipient encryption system that can be used for
digital content distribution, with the property that the de-
cryption key of each user is marked (fingerprinted). The
server of the system is capable of using a traitor tracing al-
gorithm: a procedure that given access to a pirate-decoder
is capable of recovering identities of subscribers that partic-
ipated in its construction (called traitors). A traitor tracing
scheme is, therefore, a deterrence to piracy due to the fear
of exposure.

Scalable Systems. In the context of content distribu-
tion, scalability has two facets: server-side and client-side.
Server-side scalability is assured by employing a public-key
scheme, which allows any third party to use the encryption
mechanism and broadcast digital content to the set of sub-
scribers. This is very appealing as it allows a multitude of
digital-content providers (e.g. many different channels) to
take advantage of the availability of secure broadcast to dis-
tribute their content without the need to maintain relation-
ships with clients. The clients are, in fact, managed by the
system server that is only responsible for maintaining and
assigning the clients’ decryption keys as well as publishing
the encryption key. Namely, the server acts as a pure key
(and account) management service. Regarding client-side
scalability, observe that digital content distribution systems
typically involve a large population of users (accounts), that
is changing dynamically during the run-time of the system.
New users should be introduced, and others need to be re-
moved from the active user population that is capable of



receiving the digital content. To allow for a scalable man-
agement of accounts keys should be easy to generate and
revoke.

To date, no schemes have been proposed that provide both
client-side and server-side scalability in the context of traitor
tracing schemes. This motivates us to define and realize a
Fully Scalable Public-Key Traitor Tracing Schemes which
achieves this combination.

Previous Results. Traitor Tracing Schemes were intro-
duced by Chor et al. [7], who employed a probabilistic de-
sign: each user possesses a different subset of a set of keys
and tracing is achieved using the properties of the key as-
signment. The results of Chor et al. were later implemented
with concrete combinatorial designs by [21]. These schemes
do not possess a Remove-user operation. Later these results
were extended by [12, 18], who also considered the combi-
nation of traitor tracing schemes with efficient revocation
methods (cf. broadcast encryption, [11]). These schemes
are not scalable, since (i) they do not support public-key
technology in an efficient fashion, (ii) they employ combi-
natorial designs for the key-assignment that require a tight
guess of an a-priori bound on the number of users1, and
(iii) the ciphertext size is an increasing function of the total
number of revoked users in the system’s life-time.

A “native” public-key traitor tracing scheme was introduced
in [16] and [3] (the latter introduced a public-key scheme
with deterministic traceability); both schemes did not con-
sider revocation of keys. This was considered in the work of
[20], however the number of revocations permitted by their
public-key scheme is bounded. In particular, if the number
of revocations executed in the life-time of the system exceeds
the bound, this would allow previously revoked users to gain
unlawful access to the system. Furthermore, the ciphertext
size is linear in the revocation bound, something that pro-
hibits (for efficiency purposes) to set the bound to a large
value. Public-key traitor tracing schemes with comparable
revocation capabilities as the [20]-scheme (bounded number
of revocations) were also designed in [22] and [9, 10]. In all
these schemes the bound on the number of revocations is
proportional to the ciphertext size of the system. We re-
mark that the scheme of [9] allows for an unlimited number
of revocations, however this results in a significant degrada-
tion of the scheme’s efficiency in the course of its run-time
operation (with ciphertext sizes that could become propor-
tional to the size of the user population). We note that
client-side scalability was recognized as an important issue
and was considered in the context of long lived broadcast
encryption in [13], further, it can also be achieved in the
context of multicast refresh-key [23, 6, 20]. These schemes
however, do not operate in a server-scalable environment.
In conclusion, to the best of our knowledge, none of the ex-
isting schemes satisfies the requirements of a Fully Scalable
Public-Key Traitor Tracing Scheme.

Our Results. We introduce the first carefully formalized
model and design of a fully scalable public-key traitor trac-
ing scheme where an unlimited number of users can be added

1Note that adding users beyond the bound would still be
possible but it would be an expensive operation affecting
the existing subscribers of the system.

and removed efficiently from the system. Addition of users
does not affect the keys of the existing users of the system,
further, the design does not require an a-priori bound on
the number of users. User-removal is achieved by dividing
the run-time of the system into periods; in each period a
bounded number of user removals can be executed; unlim-
ited number of user-removals is achieved in our design by
the implementation of an efficient change-period operation.

Our scheme allows efficient deterministic traitor tracing that
recovers all traitors (in the non-black-box traceability set-
ting), whereas it supports the black-box confirmation method
[3], (for black-box traitor tracing model).

In a fully scalable scheme adversaries can run the Add-

user protocol to introduce adversarially controlled users in
the system, and they can observe the modifications to the
public-key of the scheme that occur during the run-time
operation of the scheme and potentially take advantage of
them. We consider two types of adversaries, the ones that
try to elude the traceability capability, and the ones that
attempt to defeat the revocation mechanism of the system
(the adversarial goal is distinct in these two cases, hence the
differentiation between the two).

• Traceability Adversary: the adversary obtains some
user-keys and constructs a pirate decryption device,
employing the secret user-key information. We show
that our construction is secure against this type of ad-
versaries in the non-black-box traitor tracing model.
Our traitor tracing algorithm is deterministic and re-
covers the identities of all traitors. Further, our scheme
supports the black-box confirmation method, that al-
lows a form of traceability in the black-box traitor trac-
ing model, [3].

• Window Adversary: the adversary obtains some user-
keys that are subsequently revoked; the adversary re-
mains active and observes the revocation of other users
of the system (in fact we allow the adversary to adap-
tively select which users are revoked). We show that
our construction is secure against window adversaries
as long as they are fully revoked in a “window” of the
system’s operation that has a certain length (which is
specified as a system parameter).

The advantage of our fully scalable construction over pre-
vious schemes, comes from the fact that any fully revoked
adversary in a window of the system’s operation will, in
fact, “expire.” An expired adversary will be incapable of
intercepting the scrambled content (in the semantic secu-
rity sense) even if it remains active in the system (and can
still choose which revocation to apply). It is the capability
of our scheme to expire adversaries that allows for the en-
hanced functionality of an unlimited number of revocations.
None of the previous public-key traitor tracing schemes with
revocation capability [20, 22, 9, 10] possessed this crucial
property. In Table 1 we compare our construction to previ-
ous public-key schemes.

2. OUR MODEL: SCALABLE PUBLIC-KEY
TRAITOR TRACING

The run-time of a fully scalable public-key traitor tracing
scheme is divided into periods. A period is an administra-



Ciphertext-
Size

Max Traceable Col-
lusion

Add-User Remove-User Adversaries
Expire

[CFN94] (as
PK)

O(( v
2
)3 log n) v/2 (probabilistic-

BB)
Bounded n/a n/a

[KD98] v - Unlimited n/a n/a
[BF99] v v/2 (any Non-BB) +

BB Confirmation
Bounded n/a n/a

[NP00] (PK-
Scheme)

v v/2 (Non-BB + spe-
cialized adversaries)

Unbounded up to v revocations NO

[TT01] v BB Confirmation Unlimited up to v revocations NO
[DF02] O(r log n) unlimited Bounded unlimited NO
[DF03] v BB Confirmation Unlimited up to v revocations NO
This work v v/2 (any Non-BB) +

BB Confirmation
Unlimited up to v per period,

Unlimited overall
YES

Table 1: Comparison of the main construction of this paper to previous Public-Key Traitor Tracing Schemes.
Note that “BB” stands for Black-Box, and BB-Confirmation stands for the black-box confirmation method of
[3] that requires exponential-time. The parameters used in the table are n=# of users, r=# of revocations.
Note that “unlimited” means that any polynomial number of users (in the security parameter) can be
supported.

tive unit managed based on activity and potentially time
passing. A fully scalable scheme is comprised of the follow-
ing basic procedures:

• Setup. An initialization procedure that is executed by
the server; it outputs a public-key e.

• Broadcast Encryption. A public encryption algorithm
E that takes as input the public-key e, and a plaintext
M , and outputs a ciphertext C. The ciphertext C is
distributed to a population of users through a broad-
cast channel.

• Decryption. A deterministic algorithm D that takes as
input the ciphertext C, and a user’s secret-key infor-
mation and decrypts C.

• Add-user. It is a key-generation procedure that results
in a personalized secret-key that can be used to in-
vert the public-key e. It is executed by the server and
secretly communicated to a new user of the system.

• Remove-user. A procedure R that given a public-key e

and a user’s secret-key ~d, results in a public-key e′, so
that for all messages M , E(e′, M) should be “incom-
prehensible” for the user holding the revoked secret-

key ~d, while non-removed users should be capable of
decrypting it.

The revocation procedure has a saturation limit that
is an upper bound to the number of users that can be
removed inside a period.

• Tracing. A procedure T that given the contents of
a pirate-decoder outputs the identities of the traitor
users whose keys are employed in the pirate-decoder.

• New-period. A procedure followed by the server that
results in a special message transmitted to the ac-
tive subscribers of the system that changes the period.
Users removed in previous periods should be incapable
of decrypting any data transmitted inside the new pe-
riod. A period can be changed when the saturation
limit is reached (a reactive change), or when a certain
time-limit is reached (a pro-active change).

Scalability Objectives. The properties of the various
functions of a fully scalable scheme should satisfy the fol-
lowing requirements:

• Efficient addition of unlimited number of users through-
out the scheme’s operation. Specifically, the Add-user

operation should be a protocol executed between a new
user and the server, that should have (i) communica-
tion independent of the size of the user-population,
and (ii) it should not involve the existing users of the
system in any way.

• Efficient traitor tracing of a pirate-decoder. Specifi-
cally, the tracing procedure should be polynomial-time
in the number of users and the number of traitors.

• Efficient revocation of the decryption capabilities of a
set of users inside a period, provided that the number
of users to be removed is below the saturation-limit.
Specifically, Remove-user should have time complexity
independent of the number of users, and should be
executed solely by the server, affecting only the public-
key of the system.

• Efficient introduction of a new period. The commu-
nication overhead for changing a period should be in-
dependent of the number of users of the system and
it should not require private communication channels
between the server and the active users (but contrary
to Remove-user it will require from users to modify
their secret-keys — as a result in our model users are
stateless within a period and statefull across periods).

Formal Modeling of Fully Scalable Schemes. The
functionality of a fully scalable public-key traitor tracing
scheme should be two-fold: on one hand, it should be capa-
ble of identifying users that participate in the construction
of pirate-decoders; on the other hand, the system should
be capable of revoking the decryption capabilities of “bad”
users. We formally model the security of tracing and revo-
cation in Section 5 and Section 6 respectively.

3. DISCRETE-LOG REPRESENTATIONS
3.1 The Intractability Assumption



Let G be a large cyclic multiplicative group of prime order
q. Typically we assume that G is the subgroup of order q of
Z∗

p, where q | p − 1 and p, q are large primes. We denote by
[q] the set {0, . . . , q − 1}. The intractability assumption we
employ is the following:

Definition 1. Decisional Diffie Hellman Assumption.
The Decisional Diffie Hellman (DDH) Assumption asserts
that distinguishing in probabilistic polynomial-time the fam-
ily R := {〈g, g′, u, u′〉 | g, g′, u, u′ ∈ G} from the family
D := {〈g, g′, u, u′〉 | g, g′ ∈ G, logg u = logg′ u′} can only
be done with negligible success probability.

Let h0, h1, . . . , hv be elements of G so that hj := grj for
j = 0, . . . , v with r0, . . . , rv ∈ [q]. For a certain element
y := gb of G a representation of y with respect to the base

h0, . . . , hv is a (v + 1)-vector ~δ := 〈δ0, . . . , δv〉 such that

y = hδ0
0 . . . hδv

v , or equivalently ~δ · ~r = b where “·” denotes
the inner product of two vectors. It is well known (see [5])
that obtaining representations of a given y w.r.t. some base
h0, . . . , hv is as hard as the discrete-log problem over G. Fur-
thermore, it was shown in [3] that if some adversary is given
m < v random representations of some y with respect to
some base, then any additional representation that can be
obtained has to be a “convex combination” of the given rep-

resentations (a convex combination of the vectors ~δ1, . . . ~δm

is a vector
Pm

ℓ=1 µℓ
~δℓ with

Pm

ℓ=1 µℓ = 1). However, our
scheme makes use of a particular family of discrete-log rep-
resentations, introduced below. In section 6 we will see how
to modify the Lemma of [3] accordingly.

3.2 Leap-Vectors
We introduce a new family of discrete-log representations,
called leap-vectors. Let P be a random polynomial of de-
gree v over Zq. For some z1, . . . , zv ∈ Zq a leap-vector is
a vector 〈α0, α1, . . . , αv〉 over Zq so that: 〈α0, α1, . . . , αv〉 ·
〈1, P (z1), . . . , P (zv)〉 = P (0).

Definition 2. Given z1, . . . , zv ∈ Zq, and P (x) ∈ Zq[x]
the set of leap-vectors LP

z1,...,zv
includes all vectors ~α for

which it holds that ~α · 〈1, P (z1), . . . , P (zv)〉 = P (0).

It follows that a leap-vector is a representation of gP (0) with
respect to the base g, gP (z1), . . . , gP (zv). Given any leap-
vector ~α := 〈α0, . . . , αv〉 for some values z1, . . . , zv it is pos-
sible to derive an equation on the coefficients of the poly-
nomial P (x) := a0 + a1x + . . . avxv which is: ((

Pv

ℓ=1 αℓ) −
1)a0 + (

Pv

ℓ=1 zℓαℓ)a1 + . . . + (
Pv

ℓ=1 zv
ℓ αℓ)av = −α0.

If one possesses a point in the graph of the polynomial P ,
〈xi, P (xi)〉 it is possible to generate a leap-vector for the
values z1, . . . , zv provided that xi 6∈ {z1, . . . , zv} using the
Lagrange interpolation coefficients λ :=

Q

j
xi

xi−zj
and λℓ :=

zl

zℓ−xi

Q

j 6=ℓ
zℓ

zℓ−zj
; now, observe that 〈λP (xi), λ1, . . . , λv〉 is

a leap-vector. We will call such a vector the leap-vector
associated to the point 〈xi, P (xi)〉. An important property
of leap-vectors (proven in the Appendix) is the following:

Proposition 3. For a polynomial P and values z1,. . ., zv,
the knowledge of a leap-vector in LP

z1,...,zv
implies knowl-

edge of a linear equation on the coefficients of the polyno-
mial P that is linearly independent from the equations on
the coefficients of P that are defined using 〈z1, P (z1)〉, . . . ,
〈zv, P (zv)〉.

As a result the possession of a leap-vector implies some
knowledge about the polynomial P beyond what is implied
by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. In other words a
leap-vector is the necessary information needed to leap from
the values P (z1), . . . , P (zv) to the value P (0).

4. OUR SCHEME
Setup. The description of a cyclic multiplicative group G of
order q is generated. Then, two random generators g, g′ ∈ G
and two random polynomials A, B ∈ IF[x] of degree v are
selected. The parameter v has the following properties: (i)
m = v/2 will be the maximum traitor collusion size, and (ii)
v will be the saturation limit. Let A(x) = a0+a1x+ . . . avxv

and B(x) = b0 + b1x + . . . + bvxv. The public-key of the
system is set to be

~e =
˙
g, g′,y, 〈z1, h1〉, . . . , 〈zv, hv〉

¸
=

˙
g, g′, gA(0)(g′)B(0),

〈z1, g
A(z1)(g′)B(z1)〉, . . . , zv, gA(zv)(g′)B(zv)〉

¸

where z1, . . . , zv ∈U [q] (“a ∈U S” means that a is selected
uniformly at random from S). The server initiates a new
period by publishing ~e, and sets the saturation level L to 0.
L is a system variable known to the server.

Add-user. When a new user i requests to be introduced
to the system, the server transmits to the user the tuple
〈xi, A(xi), B(xi)〉 (using a private channel) so that xi ∈U [q]
and xi 6∈ {z1, . . . , zv}∪U . The set U is the user-registry that
contains all values xi that were selected in previous Add-user
protocols. Subsequently the server records the value xi as
associated to user i and adds xi to U .

Encryption. The sender obtains the public-key of the sys-
tem and then employs the encryption function E that given a
plaintext M ∈ G, selects a random r ∈U [q] and sets the cor-
responding ciphertext to be:

˙
gr, (g′)r, yr ·M, 〈z1, h

r
1〉, . . . ,

〈zv, hr
v〉

¸
.

Decryption. The decryption algorithm D takes as input
a tuple of the form 〈xi, A(xi), B(xi)〉 and a ciphertext ~C =
˙
C, C′, C0, 〈z1, C1〉, . . . , 〈zv, Cv〉

¸
. D first computes the leap-

vectors ~αi = 〈(αi)0, . . . , (αi)v〉 and ~βi = 〈(βi)0, . . . , (βi)v〉,
that are associated to the points 〈xi, A(xi)〉 and 〈xi, B(xi)〉
with respect to the values z1, . . . , zv. Observe that for ℓ =
1, . . . , v it holds that (αi)ℓ = (βi)ℓ. The decryption algo-
rithm returns:

C0

C(αi)0(C′)(βi)0
Qv

ℓ=1(Cℓ)(αi)ℓ

If ~C is a properly formed ciphertext, i.e. ~C :=
˙
gr, (g′)r, yr ·

M, 〈z1, h
r
1〉, . . . , 〈zv, hr

v〉
¸

then, due to the properties of the
leap-vector representation, we have:

D(~C) =
grA(0)(g′)rB(0) · M

gr(αi)0 · (g′)r(βi)0 · Q
= M

where Q
.
=

Qv

ℓ=1 gr(αi)ℓA(zℓ) ·
Qv

ℓ=1(g
′)r(βi)ℓB(zℓ).

Remove-user. Let i1, . . . , ik be the identities of the users
to be removed, so that L + k ≤ v. Suppose that the current
public-key has the form ~e =

˙
g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉

¸
.

The revocation procedure R, uses the (private) user database



and modifies the current public-key ~e as follows:

~e =
˙
g, g′, y, 〈z1, h1〉, . . . , 〈zL, hL〉,

〈xi1 , gA(xi1
)(g′)B(xi1

)〉, . . . , 〈xik
, gA(xik

)(g′)B(xik
)〉,

〈zL+k+1, hL+k+1〉, . . . , 〈zv, hv〉
¸
.

Finally, the saturation level is increased to L := L + k.

New-period. When the saturation level L reaches the sat-
uration limit v, the server defines a new period. First, the
server broadcasts a special message “change period” (not en-
crypted). Note that we assume that change period is digitally
signed by the server so that no third parties can maliciously
initiate the new-period mode.

Let enc : [q] → G be an easily invertible encoding that trans-
lates a number from {0, . . . , q − 1} into an element of G. If
G is the subgroup of Z∗

p of oder q = p−1
2

, then enc can be

implemented as follows: enc(a) := (a+1)2 mod p. It is easy
to see that enc(a) ∈ G for any a ∈ [q]: this is because G
is the subgroup of quadratic residues modulo p. The en-
coding function enc can be easily inverted as follows: given
b := enc(a) we compute the two square roots ρ1, ρ2 of a
modulo p and define enc−1(b) = min{ρ1, ρ2} − 1 where min
treats ρ1, ρ2 as integers in [p].

The server selects u ∈U [q] and transmits the encrypted
message Creset := E(~e, enc(u)) where ~e is the current public-
key of the system. Suppose now that the current public-key
has the form ~e =

˙
g, g′, y, 〈z1, h1〉, . . . ,

〈zv, hv〉
¸
. The server modifies the public-key ~e as follows:

~enew =
˙
g, g′, guA(0)(g′)uB(0), 〈z1, g

uA(z1)(g′)uB(z1)〉, . . . ,

〈zv, guA(zv)(g′)uB(zv)〉
¸
.

Finally the server resets the saturation level L := 0, and
updates the polynomials to be Anew(x) := u · A(x) and
Bnew(x) := u · B(x) .

Upon receiving the signed change period message, the i-
th user of the system enters a wait mode. When it re-
ceives the encrypted message enc(u), the user decrypts it
and decodes it using enc−1. Then, modifies his secret tuple
〈xi, A(xi), B(xi)〉, to 〈xi, u · A(xi), u · B(xi)〉.

5. MODEL AND SECURITY FOR REVO-
CATION

Model for Revocation. The public-key traitor tracing
scheme described in Section 4 withstands a more power-
ful type of attack than what has been considered so far in
previous related work ([20, 22, 9, 10]). In such attack sce-
nario, adversary A is allowed not only to join the system a
bounded number of times v (equal to the saturation level,
which is fixed as a system parameter), but also to observe
and even actively affect the evolution of the system, by speci-
fying which users should be revoked and their relative order
in the sequence of revocations. We remark that this type
of adversary defeats all previous public-key traitor tracing
schemes with fixed ciphertext size, [20, 22, 10].

More formally, in our model the adversary interleaves, in
any adaptively chosen order, two types of queries:

• Join query: it models the subscription to the system
of a malicious user controlled by the adversary. To
reply to such query, the server executes an Add-user

operation and gives to the adversary the newly cre-
ated user-key. Notice that after a Join query, the ad-
versary obtains a valid user-key capable of recovering
subsequent encrypted broadcasts.

• Revoke query: it models the revocation of a user from
the system. To reply to such query, the server per-
forms a Remove-user operation and gives A the new
public key that results after the invalidation of the
key corresponding to the user revoked.

Notice that the main constraint we impose to the adver-
sary’s behavior is that she can make at most v Join queries;
no restriction is given for Revoke queries. Whenever A has
finished collecting the amount of information she thinks she
needs to maximize her chances to win the game, she outputs
a pair of messages and receives back the encryption of either
one with probability 1/2.

To fully appreciate the novelty of the attack scenario pro-
posed above, recall that in previous work the only function-
ality conceded to A was to obtain the secret key of a user
which was also simultaneously revoked from the system. In
our model, such capability, usually called corruption, is split
into two distinct operations. This clearly allows the adver-
sary to mount more powerful attacks, and does indeed more
closely model the reality, since the server not always find out
about “bad” users immediately. Moreover, keeping the Join

and Revoke operations distinct, allows us to impose on the
adversary the (minimal) restriction of obtaining at most v
user-keys, without bounding the number of Revoke queries.
This constitutes a major novelty of our adversarial model,
since in all previous work both the number of revoked users
and the number of compromised user-keys (tied together
by the definition of corruption query) were required to be
bounded by v.

Clearly, for the challenge to the adversary not to be trivial,
all the user-keys that A obtains through Join queries must
have been rendered useless by corresponding subsequent Re-

voke queries. We model this necessary constraint requiring
that before A asks for her challenge, there should have been
an instant at which a Change-Period operation happened,
such that during the window of v immediately preceding re-
vocations, all the (at most v) user-keys in the adversary’s
possession are revoked.

Formal Model for Window Adversary. We now present
a formal description of the above attack scenario. For a
given value of the security parameter λ, the Setup algo-
rithm is run and the adversary is given the public key of
the system. Then A interleaves, in any adaptively cho-
sen order, Join queries with Revoke queries. Each time the
number of revoked users reaches the saturation limit v, a
Change-Period operation is performed, updating the current
public key. Let xi1 , . . . , xis ∈ IFq be the values associated
with (at most v) user-keys obtained by the adversary via
Join queries. Then, before A queries the Encryption Ora-
cle, a Change-Period operation takes place, so that the set
of user-keys {xj1 , . . . , xjv} in the window of the v revoca-
tions immediately preceding the Change-Period operation,



contains all the user-keys in the adversary’s possession, i.e.
{i1, . . . , is} ⊆ {j1, . . . , jv}. When all the user-keys that A
has obtained have been revoked, A is allowed to perform
other Revoke queries; eventually she chooses two messages
M0 and M1 and queries the Encryption Oracle to obtain
her challenge. The Encryption Oracle selects a random bit
σ ∈R {0, 1} and, using the current public key, broadcasts
the message Mσ. Then, A might continue to issues Revoke

queries, but eventually she needs to output a bit σ∗, which
constitutes her best guess to the bit chosen by the Encryp-
tion Oracle.
Define A’s advantage as AdvA(λ) =| Pr(σ∗ − σ) − 1/2 |.
We say that the public-key traitor tracing scheme is secure
against window adversaries if AdvA(λ) is negligible.

Security of Revocation. We now formally prove that our
public-key, fully scalable traitor tracing scheme described in
Section 4 is secure against a window adversary (as defined in
above). In the security proof, we will follow the same struc-
tural approach used in [10], first advocated in [8]. Starting
from the actual attack scenario, we will consider a sequence
of hypothetical games, all defined over the same probability
space. In each game, the adversary’s view is obtained in
different ways, but its distribution is still indistinguishable
among the games.

The security of our scheme relies on the DDH assumption
as shown in the Theorem below.

Theorem 4. If the decisional Diffie-Hellman Problem is
hard in G, then the scheme presented above is secure against
a chosen-plaintext attack.

Proof. As a preliminary step, we first argue that the
“window constraint” that our model imposes on the adver-
sary’s behavior suffices to invalidate all the user-keys that
adversary A could have learned via Join queries. Indeed,
such constraint implies that there must have been a Change

Period operation which encrypt the ”reset information” u
when the current public key was of the form ~e = 〈g, g′, 〈xj1 ,
hj1〉, . . . 〈xjv , hjv 〉〉 and {i1, . . . , is}⊆{j1, . . . , jv}, where xi1 ,
. . . , xis are the values corresponding to the current user-keys
that A holds. Hence, A couldn’t generate the leap-vector ~αi

and ~βi (necessary to recover u from the broadcast) from any
of the user-keys in its possession: it follows that A could
not update any of its user-keys. Therefore, all the secret
data that A gathered via the Join queries is completely use-
less to recover any message (and in particular A’s challenge)
encrypted after the Change-Period operation under consider-
ation.

We now define the sequence of “indistinguishable” games
G0,G1, . . ., where G0 is the original game, and the last game
clearly gives no advantage to the adversary.

Game G0. Recall that in G0, A receives the public key and
adaptively asks Join and Revoke queries. Then, A queries
the encryption oracle on (M0, M1) and receives back the en-
cryption of one of them. Eventually, A outputs her guess
σ∗ ∈ {0, 1}. Let T0 be the event that σ = σ∗ in game G0.

Game G1. Game G1 is identical to game G0, except that,
in G1, the encryption algorithm first picks a random r ∈U

[q], then defines u
.
= gr and u′ .

= (g′)r, and finally outputs

〈gr, (g′)r, yr·M, 〈z1, u
A(z1)(u′)B(z1)〉,. . ., 〈zv, uA(zv)(u′)B(zv)〉.

It is clear that such modification is just a syntactic change;
hence, letting T1 be the event that σ = σ∗ in game G1, it

holds that Pr[T0] = Pr[T1] .

Game G2. To turn game G1 into game G2 we make an-
other change to the encryption oracle used in game G1.
Namely, the encryption algorithm now picks two random val-
ues r, r′ ∈U [q]. The definition of the values u, u′ changes,

too: u
.
= gr and u′ .

= (g′)r′

. Let T2 be the event that σ = σ∗

in game G2. Notice that while in game G1 the values u and
u′ are obtained using the same value r, in game G2 they are
totally independent, subject to r 6= r′. Therefore, using a
standard reduction argument, any non-negligible difference
in behavior between G1 and G2 can be used to construct a
PPT algorithm A1 that distinguishs Diffie-Hellman tuples
from totally random tuples with non negligible advantage.

Hence,
˛
˛ Pr[T2] − Pr[T1]

˛
˛ ≤ ǫ1 for some negligible ǫ1.

Game G3. To define game G3, the encryption oracle is
modified once again to output as challenge for the adversary
the ciphertext 〈 gr, (g′)r, yt, 〈 z1, uA(z1)(u′)B(z1) 〉, . . . , 〈zv,

uA(zv)(u′)B(zv)〉, where t has been chosen at random from
[q]. Let T3 be the event that σ = σ∗ in game G3. Because of
this last change, the challenge no longer contains σ, nor does
any other information in the adversary’s view; therefore, we

have that Pr[T3] = 1
2

. Moreover, we can prove (see Ap-

pendix, Lemma 12), that the adversary has the same chances

to guess σ in both game G2 and G3, i.e. Pr[T3] = Pr[T2] .

Hence, combining all the intermediate results together, we
can conclude that adversary A’s advantage is negligible; more
precisely: AdvA(λ) ≤ ǫ1. ⊓⊔

6. MODEL AND SECURITY FOR TRACE-
ABILITY

The goal of a tracing algorithm is to obtain the identity of at
least one of the pirates who colluded in creating a given “pi-
rate decoder” D which, as in prior works, is assumed to be
stateless. In this section we present two tracing algorithms
that can be integrated within the scheme described above.
The first method, a non-black-box algorithm, receives as in-
put a “valid” key extracted from a pirate device, constructed
using the keys of at most m users.2 The second method, a
black-box algorithm, repeatedly calls a black-box confirma-
tion subroutine that, given a pirate decryption device and
a subset of at most m suspected users, checks whether their
user-keys were used to generate the key inside the device.
It deterministically extracts the set of users whose user-keys
were used to generate the pirate key.

6.1 Tracing Attack Scenario
Our adversary A operates similarly to the corresponding
adversary in Section 5. Namely, after receiving the initial
public key of the system, she can interleave (in any adap-
tively chosen order) up to m Join queries, upon which A
receives the secret keys of the corresponding users, and a

2Recall, m denotes the collusion threshold, and should not
be confused with the revocation threshold v discussed in Sec-
tion 4; e.g., in our schemes m ≤ v/2.



polynomial number of Revoke queries. Notice that each Re-

voke will change the public key, at the adversary monitors
these changes as well. Also notice that the final set of “re-
voked” user is likely very different, and typically disjoint
from the set of m “corrupted” users. At the end, A outputs
a pirate decoder D which presumably works “well” with the
current public key (denoted PKA). The job of the tracing
algorithm is to find one or all of the (at most) m traitors
whose keys were used to build D. The precise security guar-
antees depend on whether tracing is “black-box” or not. We
describe both tracing methods in the next two subsections.

6.2 Non-Black-Box Algorithm
Our non-black-box tracing algorithm, presented below, is
building on the results of [3, 20] and is tailored to our fam-
ily of representations. Remember that a user-key is a vector
〈α, β, γ1, . . . , γv〉 where 〈α, γ1, . . . , γv〉 and 〈β, γ1, . . . , γv〉 are
leap-vectors associated to the two points that the user re-
ceives when joins the system, and w.r.t. the values available
in the public-key. Also notice that any such leap vector
~α ∈ LP

z1,...,zv
(where z1 . . . zv are currently revoked users)

will work for decrypting message encrypted with the cur-
rent public key. In the non-black-box model, we make an
assumption that the system can extract the secret key hid-
den in the illegal decoder and that this secret key must be a
leap-vector ~α ∈ LP

z1,...,zv
. This assumption seems to be very

reasonable, it is further justified by Proposition 3 and was
previously used by [3]. It is also a-priori much less restrictive
than the assumption made by [20] stating that the illegal key
must be a convex linear combination of some of the traitors’
keys. Luckily, Lemma 5 (whose proof is in the Appendix)
shows that this seemingly more restrictive assumption actu-
ally follows shows from our initial assumption.

Lemma 5. If there exist a poly-time adversary A that,
given the public key

˙
g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉

¸
and m <

v user-keys denoted by ~δ1, . . . ~δm, computes a new, valid

user-key ~δ that is not a convex linear combination of ~δ1, . . . ~δm

then the discrete-log problem over G is solvable.

We now present a deterministic tracing algorithm that, using
an error-correcting code subroutine, reveals the identities of
the traitors that created the pirate key.

Tracing Algorithm. Given the pirate user-key ~δ = 〈α, β,

γ1, . . . , γv〉, denote ~δ′
.
= 〈γ1, . . . , γv〉. Let {z1, . . . , zv} be the

set of all the users in the system and let {zi1 , . . . , ziv} be
the set of revoked users. Remember that the user-key of

each user j is a vector of the form 〈λ(j)
j A(zj) + λ

(j)
j B(zj) +

λ
(j)
i1

, . . . , λ
(j)
iv

, where λ
(j)
j , λ

(j)
i1

, . . . , λ
(j)
iv

are the Lagrange co-
efficients such that, for any polynomial M ∈ Zq[x] of de-

gree at most v, it holds that λ
(j)
j M(zj) + λ

(j)
i1

M(zi1) + . . . +

λ
(j)
iv

M(ziv ) = M(0).

Consider the matrix A whose jth row is 〈λ(j)
i1

, . . . , λ
(j)
iv

〉, j =
1, . . . , n, (i.e. obtained projecting the user-key of the generic

user j onto the last v components). By assumption, ~δ′ is
a linear combination of at most v/2 user-keys. Therefore,
there exist a vector ~ν of Hamming weight at most v/2 such

that ~ν · A = ~δ′ (⋆). Consider the two matrices

B
.
=

0

@

zi1 . . . zv
i1

. . . . . . . . .
ziv . . . zv

iv

1

A H
.
=

0

@

−λ1
1z1 . . . −λ1

1z
v
1

. . . . . . . . .
−λn

nzn . . . −λn
nzv

n

1

A

It’s easy to verify that A ·B = H. Multiplying (⋆) by H, we

get ~ν · H = ~δ′′, where ~δ′′
.
= ~δ′ · H. Let C denote the linear

code over Zn
q that has H as its parity-check matrix (i.e. ~c ∈

C ⇐⇒ ~c·H = 0). Let λ1, . . . , λn be the Lagrange coefficients
so that λ1M(z1)+ . . .+λnM(zn) = M(0), for all M ∈ Zq[x]
with degree(M) < n. In the following Lemma (whose proof
is in the Appendix), we prove that C is a Generalized Reed-
Solomon Code (GRS). For more details about Generalized
Reed-Solomon Codes, see [17].

Lemma 6. It holds that,

1. C =
˘
〈− λ1

λ
(1)
1

M(z1), . . . ,− λn

λ
(n)
n

M(zn) 〉 | M ∈ Zq[x],

degree(M) < n − v
¯
.

2. C is a linear code with message-rate (n − v)/n and
distance v + 1.

Generalized Reed-Solomon Codes can be decoded efficiently
by the algorithm of Berlekamp and Welch [1]. This means
that for any vector ~x ∈ Zn

q for which there exists a vector
~w ∈ C that disagrees with ~x in at most e positions with

e ≤ n−(n−v)
2

= v/2, it holds that ~w is unique with this
property (C has distance v + 1) and the vector ~w can be
recovered in deterministic polynomial-time.

Description of the Tracing Algorithm. We describe
how to reconstruct ~ν given ~δ′ using the algebraic decoding
algorithm of the linear code C: ~ν immediately reveals the
indices {i1, . . . , im} = {i | (i ≤ n) ∧ νi 6= 0}.

First, we compute an arbitrary vector ~θ that satisfies the

system of equations ~θ · H = ~δ′. Note that such ~θ can be

found by standard linear algebra since ~θ ·H = ~δ′ is a system
of v equations with n unknowns, n > v, and H contains a
non-singular minor of size v. It is easy to verify that the

vector ~w := ~θ − ~ν belongs to the linear code C: indeed,

~w ·H = ~θ ·H − ~ν ·H = ~δ′ − ~δ′ = 0. As a result the vector ~θ
can be expressed as ~θ = ~w + ~ν.

Provided that m ≤ v/2, it holds that the Hamming weight

of ~ν is less than or equal to v/2 and as a result ~θ is a n-vector
that differs in at most v/2 positions from the vector ~w (which

belongs to C). As a result we can view ~θ as a “partially
corrupted” ~w (in at most v/2 positions) and employ the error
correcting algorithm of the linear code C to recover ~w, by
running the Berlekamp-Welch decoding algorithm for GRS-

codes on input ~θ. Then, ~ν can be computed immediately as

~ν = ~θ − ~w.

Time-Complexity. The tracing procedure has time com-
plexity O(n2), which can be optimized further to O(n(log n)2),
if matrix operations are implemented in a more sophisticated
manner, see e.g. [2]. If the number of traitors exceeds the
bound v/2 it is still possible to extract candidate sets of
potential traitors, by employing GRS-decoding “beyond the



error-correction bound”, the Guruswami-Sudan algorithm,
[14]. This will work provided that that the size of the traitor

collusion is less or equal to n −
p

n(n − v).

Tracing. Suppose that the contents of a pirate-decoder
are exposed. In order to decrypt, a pirate-decoder should

contain a representation ~δ of y w.r.t. h1, . . . , hv. Let the
identities of the traitor users be {i1, . . . , im} ⊆ {1, . . . , n},
where n is the number of currently active users of the system.

Due to Lemma 5, ~δ should be a convex combination of the

vectors ~δi1 , . . . , ~δim that correspond to the traitors’ user-keys
~δij = 〈λ

(ij)

0 A(ij), λ
(ij)

0 B(ij), λ
(ij)

1 , . . . , λ
(ij)
v , j = 1, . . . , m.

Now suppose that ~δ1, . . . , ~δn are all the user-keys that were
given to the subscribers of the system so far. It follows that
~δ must be in the linear span of ~δ1, . . . , ~δn. Provided that
m ≤ v/2, we use the tracing algorithm that was presented
above to obtain the identities of the traitors {i1, . . . , im}.

6.3 Black-Box Algorithm
Our Black-Box algorithm will access the decoder in a black-
box way (namely, it cannot extract the algorithm or the keys
hidden inside D, but can observe D’s input-output behav-
ior). Also similarly to previous works [4, 20, 22], our algo-
rithm will only efficiently achieve the black-box confirmation
property. Informally, this is a subroutine that can be used to
test whether a given set Susp of at most m suspected users
does include all the traitors that cooperated to construct a
given pirate decoder D (and outputs at least one such pi-
rate). On a pessimistic note, this means that our tracing
algorithm might have to go through all m-element subsets
of the user set to do full-fledged tracing. However, we point
out that: (1) in many cases a lot of partial information
about the set of corrupted users, makes the search dramat-
ically smaller; (2) all the previous public-key traitor trac-
ing schemes suffer from the same problem; (3) as observed
in [15], the problem seems to be inherent in our setting.

However, we significantly improve the previous black-box
confirmation algorithms in the following respects: (1) formal
modeling of the problem; (2) our algorithm allows the adver-
sary to adaptively corrupt players before building the pirate
decoder; (3) our algorithm works as long as the decoder
works on at least on ε fraction of correctly formed messages
(rather than with probability 1; call such decoders ε-useful),
where ε is the desired threshold below which the decoder is
considered “useless” (following the “threshold tracing” ap-
proach of [19]); say, ε = 0.01.

Definition 7. A Black-Box Confirmation (BBC) algo-
rithm is a probabilistic oracle machine, taking as oracle input
a pirate decoder D, and as regular input a public key PK
on which D works and a set Susp of suspected traitors. It
outputs a user i or the special symbol ′?′. BBC is said to
properly work on an ε-useful decoder D output by A, if the
following two properties hold with all but negligible probabil-
ity for any probabilistic polynomial time adversary A:

• Confirmation: if B ⊆ Susp then BBCD(PK, Susp)
outputs some i ∈ B.

• Soundness: if BBCD(PK, Susp) outputs i 6=′?′,
then i ∈ B.

Our Black-Box Confirmation Algorithm. The algo-
rithm below assumes the collusion threshold m is at most
v/2 (precisely, 2m − 1 ≤ v). Based on the current sus-
pect set I (initialized to Susp) and using the secret key SK,
our BBC will create an invalid public key PK(I) (the initial
value of the public key is PKA). It will then observe the be-
havior of D when fed encryption of the form E(PK(I), M)
(for random M), by estimating δ(I)

.
= SuccPK(I)(D). We

notice that the Chernoff bound implies that the latter esti-
mation can be done quickly and accurately (by computing
statistics from repeated sampling), provided δ(I) is “large
enough” (specifically, at least ε/m). Now, BBC takes any
index i ∈ I, and accurately estimates δ(I \{i}). If the differ-
ence between δ(I) and δ(I \{i}) is “non-trivial” (specifically,
at least ε/2m), it proclaims i as a traitor. Otherwise, it sets
I := I \{i}, and repeats the entire procedure until I = ∅ (in
which case it outputs ′?′).

The last main detail to be filled in is how the algorithm
generates the invalid public key PK(I). Recall from Section
4 that the global secret key SK consists of two random
v-degree polynomials over IFq[x]: let (A, B) be the secret
key corresponding to the initial public key PKA. Given
the set I, we create two random v-degree polynomials A′

and B′ except they agree with A and B on points in I:
for every i ∈ I, A(i) = A′(i), B(i) = B′(i). Notice that,
since |I| ≤ m ≤ v/2, this creates no problem. We then
create the public key PK(I) as if the global secret key where
SK′ = (A′, B′) rather than SK = (A, B). Specifically, we

set y′ .
= gA′(0) · g′B′(0), h′

ℓ

.
= gA′(zℓ) · g′B′(zℓ), ℓ = 1 . . . v, and

let PK(I)
.
=(y′, h′

1, . . . , h
′
v) (we omit fixed g, g′, etc.).

Correctness of Tracing. The correctness of the tracing
algorithm follows from Lemma 8 and Lemma 9 below, whose
proof will be given in the full version of the paper.

Lemma 8. Under the DDH assumption, if |I| ≤ m ≤ z/2
and i 6∈ B, then |δ(I) − δ(I \ {i})| is negligible.

The above Lemma immediately implies the soundness of our
algorithm. Namely, it can accuse an innocent user with at
most a negligible probability. Informally, under the DDH

assumption it is impossible to notice if the value (A(i), B(i))
(unknown to the adversary) was replaced by a random noise
(A′(i), B′(i)). And the intuitive reason why we need 2m −
1 ≤ v is that the adversary gets m shares of the secret key
from users in B, and another (at most) m − 1 shares are
fixed by I \ {i}. Hence, if we had 2m − 1 > v (the degree
of our polynomials), the adversary can do the interpolation
in the exponent to check the consistency of all the values
in the enabling block, easily spotting which ones are “real”
and which ones are “fake”. (And it turns out that the above
minimal restriction is sufficient to prove Lemma 8).

Lemma 9. Under the DDH assumption, if B ⊆ Susp and
|Susp| ≤ m, then |δ(Susp) − SuccPK(D, R)| is negligible.

The above Lemma implies that if the box was useful at the
start (i.e., SuccPK(D) ≥ ε) and B ⊆ Susp, then the de-
coder cannot “notice” that PK was changed to PK(Susp),
i.e. δ(Susp) & ε.3 Coupled with the obvious fact that δ(∅)

3The relation & is meant to indicate that δ(Susp) is greater
than ε minus negligible terms.



is negligible (since M is encrypted with a totally random
one-time pad), we see that there must be a time when δ(I)
changes by a non-trivial amount (i.e., at least by ε/2m)
when we remove some i ∈ I. This i will then be output by
our algorithm, and since i cannot be an innocent user (by
Lemma 8), i must be one of the traitors. This shows the
confirmation property.

7. MANAGEMENT OF RUN-TIME PERIOD
DIVISION

The New-Period operation is invoked every v user removals
(the saturation limit). Nevertheless, depending on the sys-
tem operation it is of advantage to invoke the New-Period

operation more frequently. In particular New-Period will ex-
pire any adversary that is contained in the window of the
last v revocations (Theorem 4). Nevertheless if a New-Period

is issued every v revocations it is not guaranteed that it will
expire any adversary that is revoked in a span of any con-
secutive v revocations. For this reason we can employ a
parameter α ∈ {1, . . . , v} and issue a New-Period every α
revocations. This guarantees that any adversary that is re-
voked in a span of any v − α consecutive revocations will
expire as the following Theorem reveals (see the proof in
the Appendix):

Theorem 10. Given α ∈ {1, . . . , v − 1}, suppose that a
New-Period is issued every α revocations. Then any window
adversary that is totally revoked in a span of v−α revocations
will expire.

We also remark that New-Period operations can be issued
after a certain timer expires. This proactive mode of oper-
ation can be employed in addition to the reactive mode of
issuing a New-Period every α revocations. It increases the
system’s resilience to window adversaries in the following
sense: assume that the timer expires after τ time units; if
the expected number of revocations in τ time-units is ρ, fol-
lowing a similar argumentation as in Theorem 10, we can
argue that our system is expected to expire any adversary
that is totally revoked within a time span of ( v

ρ
− 2)τ time-

units. A detailed probabilistic analysis will be given in the
full version.
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APPENDIX
Proof of Proposition 3
Consider the following system of equations on the coeffi-
cients a0, . . . , av of the polynomial P defined by the points



〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉 and the equation associated to
the known α-vector:
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It is immediate that the equation defined by the α-vector is
linearly independent to the equations defined by the points
〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. ⊓⊔

The proofs of the following Lemma 12 is based on the same
techniques used in [8]; the main tool we will use the is the
following technical Lemma.

Lemma 11. Let k,n be integers with 1 ≤ k ≤ n, and let
K be a finite field. Consider a probability space with random

variables ~α ∈ Kn×1, ~β = (β1, . . . , βk)T ∈ Kk×1, ~γ ∈ Kk×1,
and M ∈ Kk×n, such that ~α is uniformly distributed over

Kn, ~β = M~α + ~γ, and for 1 ≤ i ≤ k, the first ith rows of M
and ~γ are determined by β1, . . . , βi−1. Then, conditioning
on any fixed values of β1, . . . , βk−1 such that the resulting
matrix M has rank k, the value of βk is uniformly distributed
over K in the resulting conditional probability space.

Let 〈C∗, (C′)∗, C∗
0 , 〈z∗

1 , C∗
1 〉, . . . 〈z

∗
v , C∗

v 〉〉 be the challenge for
the adversary A by the encryption oracle in both game G2

and G3. In what follows, we will denote with Coins the
coin tosses of A and we define X0

.
= A(0) + wB(0) and

Xℓ
.
= A(zℓ) + wB(zℓ), ℓ = 1 . . . z, where w = logg g′.

Proof of the Lemma stated in Theorem 4

Lemma 12. Pr[T4] = Pr[T3].

Proof. Consider the value X0 and the quantity V :=
(Coins, w,X1, . . . ,Xz, σ, r∗, (r′)∗). According to the speci-
fication of games G2 and G3, V and X0 assume the same
value in both games. Let us now consider the value t∗ =
logg C∗

0 : unlike the previous two quantities, t∗ assumes dif-
ferent values in the above two games. In particular, while in
game G2, t∗ contains information about the message Mσ,
in game G3, t∗ is just a random value: let us denote with
[t∗]2 and [t∗]3 the values of t∗ in game G2 and game G3,
respectively.

By definition of game G2, event T2 solely depends on (V,X0,
[t∗]2); similarly, by definition of game G3, event T3 solely
depends on (V,X0, [t

∗]3). Moreover, event T2 depends on
(V,X0, [t

∗]2) according to the same functional dependence of
event T3 upon (V,X0, [t

∗]3). Therefore, to prove the Lemma,
it suffices to show that (V,X0, [t

∗]2) and (V,X0, [t
∗]3) have

the same distribution.

According to the specification of game G3, [t∗]3 is chosen
uniformly over Zq, independently from V and X0. Hence,
to reach the thesis, it suffices to prove that the distribution
of [t∗]2, conditioned on V and X0, is also uniform in Zq. In
game G2, the quantities (V,X0, [t

∗]2) are related according
to the following matrix equation:

„
X0

[t∗]2

«

=

„
1 w
r∗ w(r′)∗

«

| {z }

T

·

„
A(0)
B(0)

«

+

„
0

loggMσ

«

in which det(T )=w(r∗ − (r′)∗) 6=0, subject to r∗ 6= (r′)∗.
As soon as we fix the value of V , the matrix T is completely
fixed, but the values A(0) and B(0) are still uniformly and
independently distributed over Zq. Now, fixing a value for
X0 also fixes a value for Mσ; hence, by Lemma 11, we can
conclude that the conditioned distribution of [t∗]2, w.r.t. V
and X0, is also uniform over Zq. ⊓⊔

Proof of Lemma 5
Let g be a generator of G, and let z = gw. Using ad-
versary A, we want to show how to recover the value w.
Choose two random polynomials A(x) and B(x) and the
random values z1, . . . , zv (that will denote the indices of
the revoked users) and x1, . . . , xm, m < v (that will de-
note the indices of the traitors). Set the public key to

be
˙
g, z, y, 〈z1, h1〉, . . . , 〈zv, hv〉

¸
, where y

.
= gA(0)zB(0) and

hℓ
.
= gA(zℓ)zB(zℓ), ℓ = 1, . . . , v. The adversary is given

such public key and m secret keys ~δ1, . . . ~δm, where ~δi =

〈λ(i)
0 A(xi), λ

(i)
0 B(xi), λ

(i)
1 , . . . , λ

(i)
v 〉, i = 1, . . . , m. By assump-

tion, A will eventually output ~δ = 〈α, β, γ1, . . . , γv〉 such
that y = gαzβ

Qv

ℓ=1 hγℓ
ℓ . Considering discrete logs to the

base g, we get the following equation:

A(0) + wB(0) = α +

vX

ℓ=1

[A(zℓ)γℓ] + w
“

β +

vX

ℓ=1

[B(zℓ)γℓ]
”

that can be rewritten as:

w
“

β +
vX

ℓ=1

[B(zℓ)γℓ]−B(0)
”

= A(0)−α−
vX

ℓ=1

[A(zℓ)γℓ] (†)

As we argue below, the probability that the coefficient of w
in (†) take the value 0 is negligible. Therefore, w.h.p. we
can recover the value of w. To complete the argument, we
now show that: Pr

ˆ
β +

Pv

ℓ=1[B(zℓ)γℓ] − B(0)=0
˜
=1/q.

Consider the matrix whose generic row is 〈λ(i)
1 , . . . , λ

(i)
v 〉, and

distinguish the following two cases.

If 〈γ1, . . . , γv〉 is a linear combination of the rows of (‡)
let pi be the coefficient of the ith row and consider β′ .

=

λ
(1)
0 B(x1)p1 + . . . + λ

(m)
0 B(xm)pm:

• if β = β′, then the fact that ~δ is a valid user-key also

implies (for symmetry) α = α′; hence, ~δ is a linear

combination of ~δ1, . . . , ~δm, that is a contradiction.

• if β 6= β′, let’s make the following considerations. Re-
call that each of the m user-keys given to the adver-
sary is in fact the mergence of the two leap-vectors

〈λ(i)
0 A(xi), λ

(i)
1 , . . . , λ

(i)
v 〉 and 〈λ(i)

0 B(xi), λ
(i)
1 , . . . , λ

(i)
v 〉.

Applying the definition of leap-vector to the second

leap-vector, we obtain B(0) = λ
(i)
0 B(xi) + λ

(i)
1 B(z1) +

. . . + λ
(i)
v B(zv), i = 1, . . . , m. Multiplying each of

these equations by the corresponding coefficient pi and
summing up memberwise, we get β′+B(z1)γ1 + . . . +
B(zv)γv. Hence, the coefficient of w can be rewrit-
ten as β − β′ + B(0)(

Pm

i=1 pi − 1). If the coefficient
of w in the (†) were 0, then

P
pi 6= 1 (since we are

assuming β 6= β′). But this could only be the case if
B(0) = (β′−β)(

Pm

i=1 pi − i)−1: since B(0) is an in-
dependent random value uniformly distributed in Zq,
this can only happen with negligible probability 1/q.



On the other hand, if 〈γ1, . . . , γv〉 is not a linear combination
of (‡) then, the coefficient of w in (†) is just a random value,
and the probability that it takes the value 0 is 1/q. ⊓⊔

Proof of Lemma 6
1. Let C′ =

˘
〈− λ1

λ
(1)
1

M(z1), . . . ,− λn

λ
(n)
n

M(zn)〉 | M ∈ Zq[x],

degree(M) < n − v
¯
. If 〈c1, . . . , cn〉 ∈ C′, then it is of the

form
˙
− λ1

λ
(1)
1

M(z1), . . . ,−
λn

λ
(n)
n

M(zn)
¸
. Then it is easy to

verify that 〈c1, . . . , cn〉 belongs to C: indeed it holds that

〈c1, . . . , cn〉 · 〈−λ
(1)
1 zℓ

1, . . . ,−λ
(n)
n zℓ

n〉 =
Pn

i=1 λiM(zi)z
ℓ
i , for

any ℓ = 1, . . . , v. Now observe that
Pn

i=1 λiM(zi)z
ℓ
i = 0

by the choice of λ1, . . . , λn (and the fact that degree(M) <

n−v). Since 〈−λ
(1)
1 zℓ

1, . . . ,−λ
(n)
n zℓ

n〉 is the ℓ-th column of H,
it follows that 〈c1, . . . , cn〉 · H = 0. This shows that C′ ⊆ C.
On the other hand observe that dim(C) = n − v = dim(C′).
Since C′ is a linear sub-space of C and it has the same di-
mension, it follows that C = C′.

2. Observe that a vector of Zn−v
q can be encoded as the

coefficients of a polynomial M ∈ Zq[x] of degree less than
n − v. The corresponding codeword of C will be the vector
˙
− λ1

λ
(1)
1

M(z1), . . . ,−
λn

λ
(n)
n

M(zn)
¸
. To see that the distance

of the linear code is v + 1 observe that any two different
codewords of C can agree on at most n − v − 1 positions,
or equivalently any two distinct codewords differ on at least
v + 1 positions. ⊓⊔

Proof of Theorem 10 Based on Theorem 4 (semantic se-
curity against window adversary) it suffices to find a change
period operation that follows a window of the system’s op-
eration (that has length v) in which all users controlled by
the adversary are removed. Let r1, . . . , rv−α be a sequence
of revocations in which all users controlled by the adversary
are removed; also let rv−α+1, . . . , rv the sequence of α sub-
sequent revocations. Since we issue a New-Period operation
every α revocations, it holds that there exists exactly one
i ∈ {v−α+1, . . . , v} so that a new period will be introduced
before revocation ri. Now observe that for this New-Period

operation, the preceding window of v revocations contains
all revocations of the users controlled by the adversary, and
as a result the adversary will expire. ⊓⊔


